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Diffraction on a crystalline slab formed by point-like scattering centres is treated

as a multiple scattering problem based on the Ewald equations. Using general

results expressed in a lucid matrix form, the two-beam solution for both

coplanar and non-coplanar cases valid near and far from Bragg peaks is found

and a detailed comparison of the final formulae obtained with those following

from Laue’s theory is performed.

1. Introduction

Ninety years ago, from 1912 to 1916, P. P. Ewald was devel-

oping the fundamentals of the theory, now called the Ewald

dynamical theory of diffraction [see original papers by Ewald

(1916, 1917) and a memorial volume for P. P. Ewald (Cruick-

shank et al., 1992)]. Ewald considered a crystal as a three-

dimensional array of electric dipoles fixed at the lattice points.

Oscillating dipoles generate electromagnetic fields, which,

superimposed upon the external wave, force dipoles to oscil-

late. The fields propagating inside the crystal must be such as

to produce excitations of all scatterers that are in full equili-

brium with the fields themselves. The problem of Ewald has

been the mechanical problem of forced oscillations of a system

of electromagnetically coupled oscillators where no boundary

conditions appear. Thus, the Ewald discrete dipole model was

recently used successfully in surface optics (Dub, 1983; Wijers

& Poppe, 1992; de Boeij et al., 1996).

Later, the Ewald concept was applied to neutron scattering

where the interaction potential is replaced by the Fermi

pseudopotential (Dederichs, 1972; Sears, 1989). The Lipp-

mann–Schwinger equation for the multiple scattering on a

system of �-function potentials yields a self-consistent system

of equations, which are the quantum-mechanical analogue of

equations first introduced by Ewald to describe the multiple

scattering of electromagnetic radiation.

On the other hand, in the dynamical theory of diffraction of

Bethe and von Laue, the crystal is considered to be a con-

tinuum described by the periodic potential. Since the potential

is discontinuous at the surface of the sample volume V, one

must find separate solutions inside and outside V and then

match the exterior and interior solutions by boundary condi-

tions. The mathematical solution of the problem based on a

macroscopic and phenomenological procedure raises the

question about the nature of the border surface and, as

pointed out by von Laue (1941), the boundary conditions

problem is ‘the weakest point of the theory’. The boundary

conditions problem was also mentioned by other authors

(Pinsker, 1978; Authier, 2001; Dub & Litzman, 2001b).

Furthermore, as pointed out by Sears (1989): ‘The accuracy of

the results obtained by the Laue method is limited by the

accuracy of the elementary expressions for the optical

potential, which neglects local-field effects. This limitation is

overcome in the Ewald method, which . . . consists in finding a

systematic self-consistent solution of the Ewald equations. In

the Ewald method the local-field effects are taken rigorously

into account.’

Ewald’s theory has been mostly connected with the theory

of dispersion (Authier, 2001, pp. 41–48) and detailed

comparison of the dispersion theories by Ewald and Laue was

done by Wagenfeld (1968). On the other hand, authors

interested in the theory of reflection and diffraction have

adopted the Laue method (see e.g. Rauch & Petraschek, 1978;

Sears, 1989; Authier, 2001). In our series of papers (Litzman &

Rózsa, 1977; Litzman, 1978, 1980, 1986; Litzman & Dub, 1990;

Litzman, 1991; Litzman et al., 1996; Litzman & Mikulı́k, 1999),

however, we have further developed and applied the Ewald

concept of the dynamical diffraction theory. In particular,

papers by Litzman (1986) and Litzman et al. (1996) have been

devoted to the problem of the multiple diffraction of neutrons.

In Litzman (1986), the solution of the quantum-mechanical

Ewald equations was expressed in a lucid matrix form and

amplitudes of the diffracted waves were then obtained in well

arranged determinant forms, which are valid quite generally.

These results may be adopted to deal also with the cases

outside the scope of standard dynamical diffraction theory

(Litzman & Dub, 1990; Litzman & Mikulı́k, 1999). In our

recent paper (Litzman et al., 1996), the case of a semi-infinite

crystal was dealt with, the results obtained being valid for

arbitrary angles of incidence, including grazing incidence,

Bragg angle near �=2, near or far from the Bragg peaks. In the

present paper, using general derived results, we will treat



rigorously the diffraction on a crystalline slab and perform a

detailed comparison of results obtained with those following

from Laue’s theory.

2. Exact multiwave formulae for the reflection and
transmission of neutrons on a crystal slab

2.1. Geometrical theory

Let us consider the scattering of neutrons on a system of

point scatterers forming a slab

Rm ¼ m1a1 þm2a2 þm3a3; m ¼ ðm1;m2;m3Þ;

m1;m2 ¼ 0;�1;�2; . . . ;�1; m3 ¼ 0; 1; 2; . . . ;N: ð1Þ

The origin of the orthogonal coordinate system Oxyz lies at

the lattice point (0, 0, 0), the plane Oxy coincides with the

entrance crystal surface plane (a1, a2). The axis Oz (unit vector

e3) and the vector a1 � a2 point into the crystal. The lattice

(g1, g2, g3) is reciprocal to the three-dimensional lattice

(a1, a2, a3), i.e. gi � ak = 2��ik (i, k = 1, 2, 3), whereas the lattice

(b1, b2) is reciprocal to the two-dimensional lattice (a1, a2), i.e.

bi ? e3, bi � ak = 2��ik (i, k = 1, 2). With c|| and c? denoting the

components of the vector c ¼ cjj þ c? parallel and perpendi-

cular to the surface, respectively, we have gjj1 ¼ b1, gjj2 ¼ b2,

gjj3 ¼ 0. Further,

f ðrÞ ¼ A expðik � rÞ with kz > 0 ð2Þ

represents the plane wave incident upon the entrance crystal

surface.

Owing to the two-dimensional discrete translation

symmetry in the surface plane ða1; a2Þ, the components of the

wavevectors parallel to the crystal surface of diffracted waves

are of the form

kjjpq ¼ kjj þ pb1 þ qb2; kjj ¼ k� kze3; p; q being integers:

ð3Þ

Then considering merely elastic scattering, the wavevectors

KþpqðkÞ and K�pqðkÞ of the diffracted waves in the Laue

(transmission) and Bragg (reflection) geometry, respectively,

are given by

K�pqðkÞ ¼ kjjpq � e3KpqzðkÞ with KpqzðkÞ ¼ þ½k
2
� ðkjjpqÞ

2
�
1=2:

ð4Þ

Using this notation, Kþ00 ¼ k is the wavevector of the incident

and forward propagating waves and K�00 is the wavevector of

the specularly reflected wave. From (4), it can be seen that

there is a finite number, say n, of different couples (p, q)

(depending on the wavelength � of the incident radiation and

the angle of incidence �) yielding 2n radiative waves with real

Kpqz(k). Other (p, q) correspond to non-radiative waves with

pure imaginary Kpqz(k).

As the wavevectors K�pq are given by (4),1 two Laue equa-

tions are satisfied automatically, viz a1 � ðk� K�pqÞ ¼ �2�p,

a2 � ðk� K�pqÞ ¼ �2�q. Thus, should the incident wave (2)

fulfil the Bragg condition, the third Laue equation must be

satisfied, i.e. for its wavevector kB

a3 � ½kB � KþpqðkBÞ� ¼ 2�l (Laue geometry) ð5aÞ

and/or

a3 � ½kB � K�pqðkBÞ� ¼ 2�l (Bragg geometry) ð5bÞ

must hold, the diffraction vector being pg1 þ qg2 � lg3 with l

integer. We introduce

��pqðkÞ ¼ a3 � K
�
pqðkÞ ¼ ajj3 � k

jj
pq � a3zKpqzðkÞ; ð6Þ

so conditions (5a) and (5b) read

�þ00ðkBÞ � �
þ
pqðkBÞ ¼ 2�l (Laue geometry) ð7aÞ

�þ00ðkBÞ � �
�
pqðkBÞ ¼ 2�l (Bragg geometry): ð7bÞ

In most experiments, the plane of incidence and the wave-

length are kept constant and only the angle of incidence �
(measured from the inner normal to the surface) varies. All

quantities in (6) are then functions of the angle � and (7a) and

(7b) can be expressed as

�þpqð�
L
pqlÞ ¼ 2�l ð8aÞ

and

��pqð�
B
pqlÞ ¼ 2�l; ð8bÞ

where

��pqð�Þ ¼ �
þ
00ð�Þ � �

�
pqð�Þ: ð9Þ
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Figure 1
� diagrams �þpqð�Þ for the Laue geometry (full line) and ��pqð�Þ for the
Bragg geometry (broken line) for the b.c.c. lattice with a1 ¼ að1; 0; 0Þ,
a2 ¼ að0; 1; 0Þ, a3 ¼ ða=2Þð1; 1; 1Þ, a=� ¼ 0:875 and k|| parallel to a1 + 2a2,
a1 and a2 lying in the crystal surface plane. For ðp; qÞ other than those
given in the figure, the values of Kpqz from (4) are purely imaginary in the
whole interval of �. The angle �L

pql or �B
pql is the angle of incidence, for

which the Bragg condition (8a) or (8b) for the Laue or Bragg geometry,
respectively, is satisfied. Diffractions with ðp; qÞ ¼ ð0; 0Þ, ð1; 2Þ and
ð�1;�2Þ are coplanar and the others are non-coplanar. ��00ð�Þ
corresponds to the specularly reflected wave. 1 See also equation (84).



Then the diffraction condition may be visualized by ‘�
diagrams’. In Fig. 1, we give the plot of �þpq and ��pq versus � 2
(�90�, +90�). The intersections of the plots of �þpqð�Þ or ��pqð�Þ
with the horizontal straight lines 2�l give Bragg reflections for

the Laue or Bragg geometry, respectively. In particular, since

��00ð�90�Þ ¼ 0, the total reflection at grazing incidence can be

considered as a special case of the symmetrical Bragg reflec-

tion (8b) with (p, q) = (0, 0) and l = 0 (see Litzman, 1991).

Furthermore, the points (e.g. �ge
11) where � diagrams for the

Laue geometry �þpq and for the Bragg geometry ��pq stick

together, and thus �þpq ! ��pq; should be mentioned since it

happens if Kpqz ! 0, which indicates grazing emergence.

2.2. Quantum-mechanical analogue of Ewald’s theory for the
diffraction of neutrons

The Ewald dynamical diffraction theory, generalized to

quantum mechanics, yields the following equations for the

wavefunction �(r) describing the diffraction of neutrons on a

crystal slab formed by identical point-like scattering centres

(Dederichs, 1972; Sears, 1989):

�ðrÞ ¼ f ðrÞ �
X

n

Q
expðikjr� RnjÞ

jr� Rnj
�n
ðRnÞ ð10aÞ

with

�m
ðRmÞ ¼ f ðRmÞ �

X0

n 6¼m

Q
expðikjRm � RnjÞ

jRm � Rnj
�n
ðRnÞ: ð10bÞ

�(r) is the total field at the point r, �mðRmÞ is the field incident

on the scatterer at Rm (local field) and f(r) represents the

incident wave (2). The point-like scattering centres are

described by the scattering length

Q ¼ ðQ�1
0 þ ikÞ�1; ð11Þ

where Im Q0 < 0. In the case without absorption, which will be

considered in the following, this condition should be under-

stood in the limit Im Q0 ! 0�. The theory is applicable for

both positive and negative scattering lengths. Nevertheless, in

the following we will consider the most common case with

Q0 > 0.

Because of the two-dimensional translational symmetry of

our problem, the solution of (10b) can be expressed as a

superposition of plane waves

�n1n2n3 ðRnÞ ¼ exp½ikjj � ðn1a1 þ n2a2Þ�
X

j

ja1 � a2j

2�i
cj expðin3 jÞ

¼
X

j

ja1 � a2j

2�i
cj expði ~kkj � RnÞ ð12aÞ

with the wavevectors

~kkj ¼ kjj þ ð1=2�Þð j � kjj � a3Þg3 ¼ kjj þ ~kkjze3;

i:e:  j ¼ a3 �
~kkj; ð12bÞ

characterizing the local field.

Substituting the Ansatz (12a) into (10b), we get the

following.

(i) The dispersion relation for the parameters  j:

1

Q
þ S0ðkÞ þ

2�ia3z

ja1 � a2j

X
pq

�
1

a3zKpqz

�
expði�þpqÞ

expði Þ � expði�þpqÞ

þ
expð�i��pqÞ

expð�i Þ � expð�i��pqÞ

��
¼ 0; ð13Þ

where poles ��pq are given by (6) and

S0ðkÞ ¼
X

ðn1;n2Þ6¼ð0;0Þ

expðikjn1a1 þ n2a2jÞ

jn1a1 þ n2a2j
exp½ikjj � ðn1a1 þ n2a2Þ�

ð14aÞ

is the well known two-dimensional interplanar Ewald optical

lattice sum (Dub & Litzman, 1983), the imaginary part of

which is

Im S0ðkÞ ¼
2�

ja1 � a2j

X
K2

pqz>0

1

Kpqz

� k: ð14bÞ

(ii) The inhomogeneous system of linear algebraic equa-

tions for the amplitudes cj:

Hc ¼ �Akz

expð�i�þ00Þ

Q
e; ð15Þ

where

c ¼ kc1; c2; . . . ; c2nk
T and e ¼ k1; 0; 0; . . . ; 0kT

are column vectors and H is square matrix of order 2n,
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H ¼

1

xþ00 � yþ00

1

xþpq � yþ00

1

xþgh � yþ00

� � �
1

xþuv � yþ00

1

x�00 � yþ00

1

x�pq � yþ00

1

x�gh � yþ00

� � �
1

x�uv � yþ00

1

xþ00 � yþpq

1

xþpq � yþpq

1

xþgh � yþpq

� � �
1

xþuv � yþpq

1

x�00 � yþpq

1

x�pq � yþpq

1

x�gh � yþpq

� � �
1

x�uv � yþpq

1

xþ00 � yþgh

1

xþpq � yþgh

1

xþgh � yþgh

� � �
1

xþuv � yþgh

1

x�00 � yþgh

1

x�pq � yþgh

1

x�gh � yþgh

� � �
1

x�uv � yþgh

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1

xþ00 � yþuv

1

xþpq � yþuv

1

xþgh � yþuv

� � �
1

xþuv � yþuv

1

x�00 � yþuv

1

x�pq � yþuv

1

x�gh � yþuv

� � �
1

x�uv � yþuv

ðxþ00Þ
Nþ1

xþ00 � y�00

ðxþpqÞ
Nþ1

xþpq � y�00

ðxþghÞ
Nþ1

xþgh � y�00

� � �
ðxþuvÞ

Nþ1

xþuv � y�00

ðx�00Þ
Nþ1

x�00 � y�00

ðx�pqÞ
Nþ1

x�pq � y�00

ðx�ghÞ
Nþ1

x�gh � y�00

� � �
ðx�uvÞ

Nþ1

x�uv � y�00

ðxþ00Þ
Nþ1

xþ00 � y�pq

ðxþpqÞ
Nþ1

xþpq � y�pq

ðxþghÞ
Nþ1

xþgh � y�pq

� � �
ðxþuvÞ

Nþ1

xþuv � y�pq

ðx�00Þ
Nþ1

x�00 � y�pq

ðx�pqÞ
Nþ1

x�pq � y�pq

ðx�ghÞ
Nþ1

x�gh � y�pq

� � �
ðx�uvÞ

Nþ1

x�uv � y�pq

ðxþ00Þ
Nþ1

xþ00 � y�gh

ðxþpqÞ
Nþ1

xþpq � y�gh

ðxþghÞ
Nþ1

xþgh � y�gh

� � �
ðxþuvÞ

Nþ1

xþuv � y�gh

ðx�00Þ
Nþ1

x�00 � y�gh

ðx�pqÞ
Nþ1

x�pq � y�gh

ðx�ghÞ
Nþ1

x�gh � y�gh

� � �
ðx�uvÞ

Nþ1

x�uv � y�gh

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

ðxþ00Þ
Nþ1

xþ00 � y�uv

ðxþpqÞ
Nþ1

xþpq � y�uv

ðxþghÞ
Nþ1

xþgh � y�uv

� � �
ðxþuvÞ

Nþ1

xþuv � y�uv

ðx�00Þ
Nþ1

x�00 � y�uv

ðx�pqÞ
Nþ1

x�pq � y�uv

ðx�ghÞ
Nþ1

x�gh � y�uv

� � �
ðx�uvÞ

Nþ1

x�uv � y�uv

��������������������������������������������

��������������������������������������������

; ð16Þ

where the following notation has been used

y�kl ¼ expði��klÞ; ð17aÞ

for all n real �þkl and all n real ��kl, and

x�kl ¼ expði �klÞ ð17bÞ

with  þkl and �kl being solutions of the dispersion relation (13).

Inserting the plane-wave superposition (12a) with the

amplitudes cj given by (15) into (10a), we get the external

wavefunctions �<(r) and �>(r) above (z < 0) and below

(z > Na3z) the crystalline slab, respectively (Litzman, 1986),

�<ðrÞ ¼ A expðik � rÞ � Akz expð�ik � a3Þ

�
X

pq

�
1

Kpqz

� �
det M�pq

det H
expði��pqÞ expðiK�pq � rÞ

�

¼ A expðik � rÞ �
X

pq

�<
pqðrÞ ð18aÞ

�>
ðrÞ ¼ Akz expð�ik � a3Þ

X
pq

�
1

Kpqz

� �
det Mþpq

det H

� expð�iN�þpqÞ expðiKþpq � rÞ

�
¼
X

pq

�>
pqðrÞ: ð18bÞ

The matrices M�pq and Mþpq of order 2n differ from the matrix H

defined by (16) in the first row only. Their first rows read

kðM�pqÞ1;jk ¼
1

xþ00 � y�pq

1

xþpq � y�pq

1

xþgh � y�pq

� � �
1

xþuv � y�pq

���� 1

x�00 � y�pq

1

x�pq � y�pq

1

x�gh � y�pq

� � �
1

x�uv � y�pq

����
���� ð19aÞ

kðMþpqÞ1;jk ¼
ðxþ00Þ

Nþ1

xþ00 � yþpq

ðxþpqÞ
Nþ1

xþpq � yþpq

ðxþghÞ
Nþ1

xþgh � yþpq

� � �
ðxþuvÞ

Nþ1

xþuv � yþpq

���� ðx�00Þ
Nþ1

x�00 � yþpq

ðx�pqÞ
Nþ1

x�pq � yþpq

ðx�ghÞ
Nþ1

x�gh � yþpq

� � �
ðx�uvÞ

Nþ1

x�uv � yþpq

�����
�����: ð19bÞ

Equations (18a), (18b) are the exact multiple-beam solution of

Ewald’s equations (10a), (10b), which are valid for any angle

of incidence and both coplanar and non-coplanar diffractions.

To apply them, it is necessary to find solutions of the disper-

sion relation (13) and then to evaluate quotients

det M�pq= det H and det Mþpq= det H.

3. Dispersion relation

The dispersion relation (13) which is of crucial importance for

the dynamical theory of diffraction was discussed in detail in

our previous paper (Litzman et al., 1996). Let us recall the

most important general results. First we recall that (13) may be

brought into the following form appropriate for finding its

solutions

L>ð Þ þ L<ð Þ ¼ h0f1þQ0Re½S0ðkÞ�g ð20Þ

with



L>
ð Þ ¼ � 1

2

XðnÞ
pq

K2
pqz>0

1

a3zKpqz

sinða3zKpqzÞ

sin½ð � �þpqÞ=2� sin½ð � ��pqÞ=2�

ð21aÞ

L<
ð Þ ¼

X
pq

K2
pqz<0

1

a3zjKpqzj

expð�a3zjKpqzjÞ � cosð �ajj3 � k
jj
pqÞ

coshða3zjKpqzjÞ � cosð �ajj3 � k
jj
pqÞ

" #

ð21bÞ

being the finite and rapidly convergent infinite sums over all

(pq) for which Kpqz is real and purely imaginary, respectively.

Furthermore,

h0 ¼
ja1 � a2j

2�a3zQ0

ð22Þ

and the term Q0Re½S0ðkÞ�, being of order 1=h0, can be

neglected for h0� 1. It is worth noting that the right-hand side

of (20) is real because in the dispersion relation (13) the

imaginary part of 1=Q, being equal to k, cancels exactly with

the term �k in the imaginary part (14b) of the interplanar

lattice sum, which results from the fact that the local-field

effects are taken rigorously into account.2 If we put Q0 equal

to the bound scattering length, the parameter h0 is related to �
defined by equation (3.1.7) in Sears (1989) by3

h0 ¼
2

�a2
3zk2

: ð23Þ

The function on the left-hand side of (20) has poles for

�þpq þ 2�m and ��pq þ 2�m, the positions of which are given by

the geometry and the wavelength only, whereas the right-hand

side of (20) depends on the strength of the interaction

between neutron and scattering centres. Thus, each solution of

the dispersion relation may be associated with one pole �þpq

and/or ��pq. We denote them by  þpq and  �pq, respectively. The

distance j þpq � �
þ
pqj and/or j �pq � �

�
pqj is the smaller the

greater the value of h0. Considering neutron diffraction where

h0� 1, each solution  þpqð 
�
pqÞ lies ‘very’ near the corre-

sponding pole �þpqð�
�
pqÞ. In the simplest case when the pole �þpq

and/or ��pq is far (mod 2�) from any other poles, we get directly

from (13)

expði �pqÞ ¼ expði��pqÞ½1� i�pq þOðh�2
0 Þ�; ð24Þ

where

�pq ¼ �
1

h0a3zKpqz

¼ �
�a3zk2

2Kpqz

: ð25Þ

The more complicated problem arises when some poles of

dispersion relation almost coincide (mod 2�). Special atten-

tion should be paid to the confluence of two particular poles,

namely �þrs ðkÞ and �þ00ðkÞ and/or ��rs ðkÞ and �þ00ðkÞ, the former

representing the Bragg diffraction condition for the Laue

geometry and the latter for the Bragg geometry.

(i) Laue geometry

Let us consider the two poles �þ00 and �þrs ,

�þ00 � �
þ
rs ¼ 2�l þ �l

00;rs; j�
l
00;rsj<� and l is an integer;

ð26Þ

which may coincide when �l
00;rs! 0, and it is assumed that the

other poles are well separated from both �þ00 and �þrs (mod 2�).

In the following, we will use the simple notation �l
00;rs ¼ �.

Then we separate the terms corresponding to the poles �þ00

and �þrs in (13), converting it into the form

i�00

expði�þ00Þ

expði Þ � expði�þ00Þ
þ i�rs

expði�þrs Þ

expði Þ � expði�þrs Þ
¼ G00;rsð Þ;

ð27Þ

where �pq is given by (25) and

G00;rsð Þ ¼ 1þ 	00;rsð Þ � i
�00 þ �rs

2
ð28aÞ

with

	00;rsð Þ ¼ Q0Re½S0ðkÞ� þ �00

sinð � ��00Þ

2½1� cosð � ��00Þ�

þ �rs

sinð � ��rs Þ

2½1� cosð ���rs Þ�
þ

1

2h0

X0

uv
ðuvÞ6¼ð00Þ
ðuvÞ6¼ðrsÞ

K2
uvz>0

�
1

a3zKuvz

�
sinða3zKuvzÞ

sin½ð � �þuvÞ=2� sin½ð � ��uvÞ=2�

�
�

1

h0

L<
ð Þ:

ð28bÞ

As the term Q0Re½S0ðkÞ� is of order 1=h0, the value of the

function 	00;rsð Þ, having poles for all �þmn and ��mn, except �þ00

and �þrs , is, outside the poles �þmn and ��mn, of order 1=h0.

To find solutions of (27),  þ00 and  þrs , which are associated

with the poles �þ00 and �þrs , let us put on the left-hand side of

(27) x ¼ expði Þ and formally solve for x the quadratic

equation obtained. Then, after some lengthy but easy algebra,

dispersion relation (27) yields two equations:

expði þ00Þ ¼ expði�þ00Þ 1�
i

G00;rsð 
þ
00Þ

�
ð�00�rsÞ

1=2 ~ZZ�00;rsð 
þ
00Þ

�

� exp i
�þrs � �

þ
00

2

� �
� �00

��
ð29aÞ

and

expði þrsÞ ¼ expði�þrs Þ 1þ
i

G00;rsð 
þ
rsÞ

�
ð�00�rsÞ

1=2 ~ZZ�00;rsð 
þ
rsÞ

�

� exp i
�þ00 � �

þ
rs

2

� �
þ �rs

��
; ð29bÞ

where

~ZZ�00;rsð Þ ¼ Z00;rsð Þ � s½Z00;rsð Þ�½Z
2
00;rsð Þ þ 1�1=2 ð30Þ

with
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Z00;rsð Þ ¼
1

2ð�00�rsÞ
1=2
ð�00 � �rsÞ cos

�þ00 � �
þ
rs

2

� ��

þ 2Re½G00;rsð Þ� sin
�þ00 � �

þ
rs

2

� ��
: ð31Þ

Here and in the following sðXÞ means the sign of X. Let us

note that for ~ZZ�00;rsð Þ the condition j ~ZZ�00;rsð Þj 	 1 holds.

Next we will look for appropriate approximations in (29a),

(29b). The right-hand side of (29a) and/or (29b) depends on

 þ00 and/or  þrs through 	00;rsð Þ. As  þ00 and  þrs are near to the

poles �þ00 and �þrs , both 	00;rsð 
þ
00Þ and 	00;rsð 

þ
rsÞ are very small

(of order 1=h0) and, therefore, we may put in (29a) and (29b)

G00;rsð Þ ¼ 1þOðh�1
0 Þ. In this approximation, (29a) and (29b)

yield

expði þ00Þ ¼ expði�þ00Þ

�
1� i

�
ð�00�rsÞ

1=2ð�1Þl ~ZZ�00;rs

� exp �i
�

2

	 

� �00

i
þOðh�2

0 Þ

o
ð32aÞ

and

expði þrsÞ ¼ expði�þrsÞ

�
1þ i

�
ð�00�rsÞ

1=2ð�1Þl ~ZZ�00;rs

� exp i
�

2

	 

þ �rs

�
þOðh�2

0 Þ

�
; ð32bÞ

where � has been introduced by (26) and ~ZZ�00;rs (not depending

on  ) is given by (30) with Z00;rsð Þ being replaced by

Z00;rs 
 Zrs ¼
ð�1Þl

2ð�00�rsÞ
1=2
ð�00 � �rsÞ cos

�

2

	 

þ 2 sin

�

2

	 
n o
;

ð33Þ

which now does not depend on  . It is worth noting that if �
increases, which means that the poles become separated, ~ZZ�00;rs

goes to zero and consequently (32a) and (32b) reduce to (24).

On the other hand, for Bragg reflection, where �! 0, (33)

may be approximated by

Z
ð0Þ
00;rs ¼

ð�1Þl

2ð�00�rsÞ
1=2
ð�00 � �rsÞ þ �
� �

¼ ð�1Þlzrsl; ð34Þ

which depends linearly on the parameter � expressing the

deviation from the Bragg diffraction condition. As

�pq ¼ Oðh�1
0 Þ and j ~ZZ�00;rsj 	 1, (32a) and (32b) yield, respec-

tively,

 þ00 � �
þ
00 ¼ �00 � ð�00�rsÞ

1=2½zrsl � sðzrslÞðz
2
rsl þ 1Þ1=2� ð35aÞ

and

 þrs � �
þ
00 ¼ �00 � ð�00�rsÞ

1=2
½zrsl þ sðzrslÞðz

2
rsl þ 1Þ1=2

�: ð35bÞ

From (35a) and (35b), it can be seen that when the sign of zrsl

is changed the solutions  þ00 and  þrs interchange.

If the reflected wave does lie in the plane of incidence

(coplanar diffraction), the parameter � is related to the

departure �� from Bragg’s incidence of the incident wave

(see Appendix A) by

� ¼ �a3zk2 1

Krsz

sin 2�B��; ð36Þ

where �B is the Bragg angle. Then substituting � from (36)

and �pq from (25) into (34), we get

zrsl ¼ �
1

2

Krsz

kz

� �1=2

�
kz

Krsz

� �1=2

þ
2

�

kz

Krsz

� �1=2

sin 2�B��

" #
:

ð37Þ

(ii) Bragg geometry

Now we will consider the two poles �þ00 and ��rs related by

�þ00 � �
�
rs ¼ 2�l þ 
l

00;rs; j

l
00;rsj<� and l is an integer;

ð38Þ

which may coincide when 
l
00;rs ! 0, and again suppose that

the other poles are well separated from both �þ00 and ��rs . In the

following, we will again use the simple notation 
l
00;rs ¼ 
.

Analogously to the Laue geometry, we separate the terms

corresponding to the poles �þ00 and ��rs in (13) converting it into

the form

i�00

expði�þ00Þ

expði Þ � expði�þ00Þ
þ i�rs

expð�i��rs Þ

expð�i Þ � expð�i��rs Þ

¼ F00;rsð Þ; ð39Þ

where �pq is given by (25) and

F00;rsð Þ ¼ 1þ ’00;rsð Þ � i
�00 þ �rs

2
ð40aÞ

with

’00;rsð Þ ¼ Q0Re½S0ðkÞ� þ �00

sinð ���00Þ

2½1� cosð ���00Þ�

� �rs

sinð ��þrs Þ

2½1� cosð ��þrs Þ�
þ

1

2h0

X0

uv
ðuvÞ6¼ð00Þ
ðuvÞ6¼ðrsÞ

K2
uvz>0

�
1

a3zKuvz

�
sinða3zKuvzÞ

sin½ð � �þuvÞ=2� sin½ð � ��uvÞ=2�

�
�

1

h0

L<ð Þ;

ð40bÞ

which has poles for all �þmn and ��mn except �þ00 and ��rs and is,

outside the poles �þmn and ��mn, of order 1=h0.

Next we proceed quite analogously as in the Laue geometry.

Then, in the approximation F00;rsð Þ ¼ 1þOðh�1
0 Þ, we get

expði þ00Þ ¼ expði�þ00Þ

�
1� i

�
ð�00�rsÞ

1=2
ð�1Þl ~YY�00;rs

� exp �i



2

	 

� �00

�
þOðh�2

0 Þ

�
ð41aÞ

and

expði �rsÞ ¼ expði��rs Þ

�
1þ i

�
ð�00�rsÞ

1=2
ð�1Þl ~YY�00;rs

� exp i



2

	 

� �rs

�
þOðh�2

0 Þ

�
; ð41bÞ

where
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~YY�00;rs ¼ Y00;rs � sðY00;rsÞðY
2
00;rs � 1Þ1=2

ð42Þ

with

Y00;rs 
 Yrs ¼
ð�1Þl

2ð�00�rsÞ
1=2
ð�rs þ �00Þ cos




2

	 

þ 2 sin




2

	 
h i
:

ð43Þ

It is worth noting that for ~YY�00;rs defined by (42) the condition

j ~YY�00;rsð Þj 	 1 holds and if 
 increases ~YY�00;rs goes to zero and

consequently (41a) and (41b) reduce to (24).

Finally, for the Bragg reflection, where 
 ! 0, from (41a)

and (41b) it follows, respectively, that

 þ00 � �
þ
00 ¼ �00 � ð�00�rsÞ

1=2
½yrsl � sðyrslÞðy

2
rsl � 1Þ1=2

� ð44aÞ

and

 �rs � �
þ
00 ¼ �00 � ð�00�rsÞ

1=2½yrsl þ sðyrslÞðy
2
rsl � 1Þ1=2�; ð44bÞ

where

yrsl ¼
1

2ð�00�rsÞ
1=2
½ð�00 þ �rsÞ þ 
� ð45Þ

depends, like zrsl defined by (34), linearly on the parameter 

expressing the deviation from the Bragg diffraction condition.

From (44a), (44b), it can be seen that when the sign of yrsl is

changed the solutions  þ00 and  �rs interchange and, moreover,

if jyrslj< 1, solutions  þ00 and  �rs are complex conjugated.

As in the Laue geometry, in the case of coplanar diffraction

the parameter 
 is related to the departure �� from Bragg’s

incidence of the incident wave (see Appendix A),


 ¼ þa3zk2 1

Krsz

sin 2�B�� ð46Þ

and then yrsl reads

yrsl ¼ �
1

2

Krsz

kz

� �1=2

þ
kz

Krsz

� �1=2

�
2

�

kz

Krsz

� �1=2

sin 2�B��

" #
:

ð47Þ

Let us recall that (35a), (35b) with zrsl given by (37) and

(44a), (44b) with yrsl given by (47) result from the two-beam

dispersion relation for coplanar Bragg reflections in the Laue

or Bragg geometry, respectively.

Furthermore, considering (6) and (12b), we get

 �pq � �
þ
00 ¼ a3 �

~kk�pq � a3 � K
þ
00

¼ ðajj3 � k
jj
þ a3z

~kk�pqzÞ � ða
jj

3 � k
jj
þ a3zkzÞ

¼ a3zð
~kk�pqz � kzÞ: ð48Þ

Thus (35a), (35b) and (44a), (44b) give the differences

between the z components of the wavevectors of the local field

and the incident beam.

4. Wavefunctions

The wavefunctions of the diffracted waves are given by (18a)

and (18b) where quotients

det M�pq= det H and det Mþpq= det H ð49Þ

are to be evaluated. First we will analyse qualitatively the

values of elements of the matrices H, M�pq and Mþpq. As each

solution  þpq ð 
�
pqÞ lies ‘very’ near the corresponding pole

�þpq ð�
�
pqÞ, all elements on the main diagonal of H are always of

order h0, whereas the values of its elements outside the main

diagonal depend on the respective positions of poles. A similar

conclusion holds for the matrices M�pq and Mþpq which,

however, contain in their first rows the large element

1=ðx�pq � y�pqÞ and/or ðxþpqÞ
Nþ1=ðxþpq � yþpqÞ, respectively, being

always of order h0.

Taking into account the above qualitative assertion, it is

possible to evaluate quotients (49) for particular cases in a

defined approximation. To calculate the determinants in (49),

the following formula for evaluating the determinant of a

symmetrically partitioned square matrix will be used:

det A ¼ det
11A 12A
21A 22A

����
����

¼ ðdet 22AÞ det½11A� 12Að22AÞ�1 21A�; ð50Þ

where 22A is a (non-singular) square submatrix of A.

In the following, we will handle the case when by changing

the direction of the incident beam one pole only, say �þrs, in the

Laue geometry, and/or ��rs in the Bragg geometry, may

approach �þ00, which yields the Bragg diffraction condition, the

other poles being well separated from both �þ00 and �þrs , and/or

��rs . Thus, in the following we will treat two external waves in

the Laue geometry, viz one with Kþ00 
 k and one with Kþrs , and

two external waves in the Bragg geometry, viz one with

Kþ00 
 k and one with K�rs . To evaluate the corresponding

quotients (49) by using (50), we express the matrices H, Mþrs

and M�rs in the following block form

A ¼
11A 12A
21A 22A

����
����;

where the elements of the submatrix 11A may be of order h0

whereas all matrix elements of 12A and 21A are always of

order 1. The square submatrix 11A is therefore of order 2 and

reads:

(i) in the Laue geometry

11H ¼

1

xþ00 � yþ00

1

xþrs � yþ00

1

xþ00 � yþrs

1

xþrs � yþrs

��������

��������;

11Mþrs ¼

ðxþ00Þ
Nþ1

xþ00 � yþrs

ðxþrsÞ
Nþ1

xþrs � yþrs

1

xþ00 � yþrs

1

xþrs � yþrs

��������

��������
and

11Mþ00 ¼

ðxþ00Þ
Nþ1

xþ00 � yþ00

ðxþrsÞ
Nþ1

xþrs � yþ00

1

xþ00 � yþrs

1

xþrs � yþrs

��������

��������; ð51Þ
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(ii) in the Bragg geometry

11H ¼

1

xþ00 � yþ00

1

x�rs � yþ00

ðxþ00Þ
Nþ1

xþ00 � y�rs

ðx�rsÞ
Nþ1

x�rs � y�rs

��������

��������;

11M�rs ¼

1

xþ00 � y�rs

1

x�rs � y�rs

ðxþ00Þ
Nþ1

xþ00 � y�rs

ðx�rsÞ
Nþ1

x�rs � y�rs

��������

��������
and

11Mþ00 ¼

ðxþ00Þ
Nþ1

xþ00 � yþ00

ðx�rsÞ
Nþ1

x�rs � yþ00

ðxþ00Þ
Nþ1

xþ00 � y�rs

ðx�rsÞ
Nþ1

x�rs � y�rs

���������

���������
: ð52Þ

We now set out to calculate the external waves for both

Laue and Bragg geometries.

(i) Laue geometry

As 22H ¼ 22Mþrs ¼
22Mþ00, by using (50) and (51) we get

det Mþ00

det H
¼

det11 Mþ00

det11 H
þOðh�2

0 Þ

¼

xþ00 � yþrs

xþ00 � yþ00

ðxþ00Þ
Nþ1 �

xþrs � yþrs

xþrs � yþ00

ðxþrsÞ
Nþ1

xþ00 � yþrs

xþ00 � yþ00

�
xþrs � yþrs

xþrs � yþ00

þOðh�2
0 Þ;

ð53aÞ

which determines the amplitude of the external beam with

Kþ00 
 k, and

det Mþrs

det H
¼

det11 Mþrs

det11 H
þOðh�2

0 Þ

¼
ðxþ00Þ

Nþ1
� ðxþrsÞ

Nþ1

xþ00 � yþrs

xþ00 � yþ00

�
xþrs � yþrs

xþrs � yþ00

þOðh�2
0 Þ; ð53bÞ

which determines the amplitude of the external beam with Kþrs .

The fractions ðxþ00 � yþrsÞ=ðx
þ
00 � yþ00Þ and

ðxþrs � yþrsÞ=ðx
þ
rs � yþ00Þ in (53a), (53b) may be evaluated by

using (32a), (32b). After some algebraic manipulations, we get

xþ00 � yþrs

xþ00 � yþ00

¼ � exp �i
�þ00 � �

þ
rs

2

� �
K00z

Krsz

� �1=2

� ½Zrs þ sðZrsÞðZ
2
rs þ 1Þ1=2 þOðh�2

0 Þ� ð54Þ

and

xþrs � yþrs

xþrs � yþ00

¼ � exp i
�þrs � �

þ
00

2

� �
K00z

Krsz

� �1=2

� ½Zrs � sðZrsÞðZ
2
rs þ 1Þ1=2

þOðh�2
0 Þ� ð55Þ

with Zrs being defined by (33). Finally, after inserting (54) and

(55) into (53a), (53b) we obtain from (18b) the wavefunctions

of the two external waves in the Laue geometry:

�>
00ðrÞ ¼ A

	
fexp½ið þ00 � �

þ
00Þ�g

Nþ1½Zrs þ sðZrsÞðZ
2
rs þ 1Þ1=2�

� fexp½ið þrs � �
þ
00Þ�g

Nþ1
½Zrs � sðZrsÞðZ

2
rs þ 1Þ1=2

�

�
� ½2sðZrsÞðZ

2
rs þ 1Þ1=2��1 expðiKþ00 � rÞ þOðh�2

0 Þ

ð56aÞ

and

�>
rsðrÞ ¼ �A

K00z

Krsz

� �1=2	
fexp½ið þ00 � �

þ
00Þ�g

Nþ1

� fexp½ið þrs � �
þ
00Þ�g

Nþ1


½2sðZrsÞðZ

2
rs þ 1Þ1=2�

�1

� fexp½ið�þ00 � �
þ
rs Þ�g

ðNþ1=2Þ expðiKþrs � rÞ þOðh�2
0 Þ;

ð56bÞ

where expressions expði þ00Þ and expði þrsÞ are given by (32a)

and (32b), respectively. Formulae (56a), (56b) are valid for

both coplanar and non-coplanar diffractions in and outside the

Bragg-peak regions if all other poles of the dispersion relation

are well separated from the two poles �þ00 and �þrs .

In the Bragg-peak region where �þrs is near (mod 2�) to �þ00,

the expressions for  þ00 � �
þ
00 and  þrs � �

þ
00 are given by (35a)

and (35b). Then, since when changing the sign of zrsl solutions

 þ00 and  þrs interchange, (56a), (56b) may be expressed in the

following form suitable for further discussion in x5:

�>
00ðrÞ ¼ A exp �i

k � a3

2

� �
�


½zrsl þ ðz

2
rsl þ 1Þ1=2

� exp½iðN þ 1Þa3z ~��L
z��

� ½zrsl � ðz
2
rsl þ 1Þ1=2� exp½iðN þ 1Þa3z ~��L

zþ�
�

� ½2ðz2
rsl þ 1Þ1=2��1 exp iKþ00 � rþ

a3

2

	 
h i
for z>Na3z ð57aÞ

and

�>
rsðrÞ ¼ ð�1ÞlA exp �i

k � a3

2

� �

�
K00z

Krsz

� �1=2

exp½iðN þ 1Þa3z ~��L

zþ�

� exp½iðN þ 1Þa3z ~��L
z��
�
½2ðz2

rsl þ 1Þ1=2
�
�1

� exp iðN þ 1Þa3z

�

a3z

� �
exp iKþrs � rþ

a3

2

	 
h i
for z>Na3z; ð57bÞ

where zrsl is defined by (34) and

~��L
z� ¼ �

�k2

2kz

�
�k2

2ðkzKrszÞ
1=2
½zrsl � ðz

2
rsl þ 1Þ1=2

� ð58Þ

express the differences between the z components of the

wavevectors of the local field and the incident beam [see (48)

and (35a), (35b)].
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(ii) Bragg geometry

As 22H ¼ 22M�rs ¼
22Mþ00 , by using (50) and (52), we get

det Mþ00

det H
¼

det11 Mþ00

det11 H
þOðh�2

0 Þ

¼

xþ00 � y�rs

xþ00 � yþ00

�
x�rs � y�rs

x�rs � yþ00

xþ00 � y�rs

xþ00 � yþ00

ðxþ00Þ
�ðNþ1Þ

�
x�rs � y�rs

x�rs � yþ00

ðx�rsÞ
�ðNþ1Þ

þOðh�2
0 Þ;

ð59aÞ

which determines the amplitude of the external beam with

Kþ00 
 k, and

det M�rs

det H
¼

det11 M�rs

det11 H
þOðh�2

0 Þ

¼
ðx�rsÞ

Nþ1 � ðxþ00Þ
Nþ1

xþ00 � y�rs

xþ00 � yþ00

ðx�rsÞ
Nþ1
�

x�rs � y�rs

x�rs � yþ00

ðxþ00Þ
Nþ1

þOðh�2
0 Þ;

ð59bÞ

which determines the amplitude of the external beam with K�rs .

The fractions ðxþ00 � yþrsÞ=ðx
þ
00 � y�00Þ and

ðx�rs � y�rsÞ=ðx
�
rs � yþ00Þ in (59a), (59b) may be evaluated by

using the dispersion relation (39). Using it, we obtain from

(18b) and (18a) the wavefunctions of the two external waves in

the Bragg geometry,

�>
00ðrÞ ¼ A½2sðYrsÞðY

2
rs � 1Þ1=2�

�
fexp½�ið þ00 � �

þ
00Þ�g

Nþ1

� ½Yrs þ sðYrsÞðY
2
rs � 1Þ1=2

� � fexp½�ið �rs � �
þ
00Þ�g

Nþ1

� ½Yrs � sðYrsÞðY
2
rs � 1Þ1=2�

��1
expðiKþ00 � rÞ þOðh�2

0 Þ

ð60aÞ

and

�<
rsðrÞ ¼ A

K00z

Krsz

� �1=2�
fexp½ið �rs � �

þ
00Þ�g

Nþ1

� fexp½ið þ00 � �
þ
00Þ�g

Nþ1
�

�
�
fexp½ið �rs � �

þ
00Þ�g

Nþ1
½Yrs þ sðYrsÞðY

2
rs � 1Þ1=2

�

� fexp½ið þ00 � �
þ
00Þ�g

Nþ1½Yrs � sðYrsÞðY
2
rs � 1Þ1=2�

��1

� exp i
��rs � �

þ
00

2

� �
expðiK�rs � rÞ þOðh�2

0 Þ; ð60bÞ

where Yrs is given by (43) and expressions expði þ00Þ and

expði �rsÞ are given by (41a) and (41b), respectively. As in the

Laue geometry, formulae (60a) and (60b) are valid for both

coplanar and non-coplanar diffractions in and outside the

Bragg-peak regions if all other poles of the dispersion relation

are well separated from the two poles �þ00 and ��rs .

In the Bragg-peak region where ��rs is near (mod 2�) to �þ00,

the expressions for  þ00 � �
þ
00 and  �rs � �

þ
00 are given by (44a)

and (44b). Then, (60a), (60b) may be expressed in the

following form suitable for further discussion in x5:

�>
00ðrÞ ¼ A exp �i

k � a3

2

� �
½2ðy2

rsl � 1Þ1=2
�

�



exp½�iðN þ 1Þa3z ~��B
z��½yrsl þ ðy

2
rs � 1Þ1=2�

� exp½�iðN þ 1Þa3z ~��B
zþ�½yrsl � ðy

2
rsl � 1Þ1=2

�
��1

� exp iKþ00 � rþ
a3

2

	 
h i
for z>Na3z ð61aÞ

and

�<
rsðrÞ ¼ ð�1ÞlA

K00z

Krsz

� �1=2

exp �i
k � a3

2

� �
�



exp½iðN þ 1Þa3z ~��B
zþ� � exp½iðN þ 1Þa3z ~��B

z��
�

�



exp½iðN þ 1Þa3z ~��B
zþ�½yrsl þ ðy

2
rs � 1Þ1=2�

� exp½iðN þ 1Þa3z ~��B
z��½yrsl � ðy

2
rsl � 1Þ1=2

�
��1

� exp iK�rs � rþ
a3

2

	 
h i
for z< 0; ð61bÞ

where yrsl is defined by (45) and

~��B
z� ¼ �

�k2

2kz

�
�k2

2ðkzKrszÞ
1=2
½yrsl � ðy

2
rsl � 1Þ1=2� ð62Þ

express again the differences between the z components of the

wavevectors of the local field and the incident beam [see

equations (48) and (44a), (44b)].

To enlighten the conditions under which formulae derived

for wavefunctions may be applied, let us consider e.g. the

diffraction Kþ11 in the Laue geometry. Formulae (56a), (56b)

with (r, s) = (1, 1) hold for all angles of incidence except those

near �L
02�11

, �B
100 and �B

001 where beams other than (1, 1) satisfy

the Bragg diffraction condition, and those near grazing inci-

dence �B
000 and emergence �ge

01 . To find the influence of the

Bragg reflection, say K�10 on the diffraction Kþ11 near �B
100, it

would be necessary to enlarge submatrices (51) of the second

order 11H, 11Mþ11, 11Mþ00 into matrices of the third order by

including large elements ðxþ00 � y�10Þ
�1 and ðx�10 � yþ00Þ

�1 and, at

the same time, to add the term with the denominator ðx� y�10Þ

on the left-hand side of the dispersion relation (27) (three-

beam case). In the Bragg-peak region at �L
11�11

, formulae (56a),

(56b) may be simplified, taking the form (57a), (57b) com-

patible with that yielded by the Laue theory as will be shown

in the next section. Concluding, let us note that the influence

of the Bragg reflections on the crystal truncation rod scat-

tering in the case of a semi-infinite crystal was studied by

Litzman & Mikulı́k (1999).

5. Comparison with Laue’s theory

In the Laue dynamical theory of diffraction, the crystal is

considered to be a continuum described by the periodic

potential. If we apply this theory to neutron diffraction, the
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coherent wave  ðrÞ, which describes neutron optical

phenomena, satisfies the one-body Schrödinger equation4

�
h- 2

2m
�þ vðrÞ

� �
 ðrÞ ¼ E ðrÞ: ð63Þ

For a finite but otherwise perfect crystal of volume V, Sears

puts

vðrÞ ¼
v0

P
h

expðiGh � rÞ inside V

0 outside V

(
ð64Þ

with Gh being the reciprocal-lattice vector and

v0 ¼ ð2�h- 2=mÞ�b, where m is the neutron mass, b is the bound

coherent scattering length and � ¼ ½a1a2a3�
�1 is the number

density.

Since v(r) is discontinuous at the surface of V, one must find

separate solutions of (63) inside and outside V and then match

the exterior and interior solutions by requiring that  ðrÞ and

r ðrÞ be continuous at the boundary. Exterior solution is

expressed as a superposition of plane waves

 ðrÞ ¼
P

a expðik � rÞ; ð65Þ

in which the wavevectors k all have the same magnitude,

which is determined by the incident-neutron energy

E ¼ h- 2k2=2m. The interior solution is expressed as a super-

position of Bloch waves

 ðrÞ ¼
P

AðrÞ expðiK � rÞ; ð66Þ

in which AðrÞ ¼
P

Ah expðiGh � rÞ is periodic. The values of K

follow from the dispersion equation and to each value of K

there corresponds a set of coefficients Ah. The values of wave

amplitudes are determined by the boundary conditions.

In the two-beam case when k satisfies the condition for

Bragg reflection via one particular reciprocal-lattice vector

Gh, the dispersion equation yields two values of K. If the

incident wave  ðrÞ ¼ a expðik � rÞ enters the crystal through a

plane boundary at z ¼ 0, the two values of K are given by

K� ¼ kþ j� where j� ¼ �z�e3. The quantity �z� rendering

the difference between z components of the wavevectors

inside and outside the crystal is given by equation (6.1.49) in

Sears (1989),

�z� ¼ �
�k2

2kz

�
�k2

2ðkzjkz þGhzjÞ
1=2

�

j�j1=2
�

�2

j�j
þ sð�Þ

� �1=2
" #

;

ð67Þ

where sð�Þ means the sign of � defined by (68) (+1 in Laue

geometry and �1 in Bragg geometry) and � ¼ v0=E is related

to our parameter h0 by (23). Parameters � and � are defined by

equation (6.1.46) in Sears (1989). If the normalized unit-cell

structure factor is equal to one,

� ¼
kz

kz þGhz

; ð68Þ

which is obviously positive or negative for the Laue and Bragg

geometry, respectively, and further it can be shown that

�

j�j1=2
¼ �

1

2

jkz þGhzj

kz

� �1=2

�
kz

jkz þGhzj

� �1=2
"

�
2

�

kz

jkz þGhzj

� �1=2

sin 2�B��

#
; ð69Þ

where we have introduced the Bragg angle �B and the

departure �� from Bragg’s incidence of the incident wave. In

(69), the sign assignment is �þ for the Laue geometry and

þ� for the Bragg geometry. Note that �=j�j is equal to the y

parameter defined by equation (9.23) in Rauch & Petraschek

(1978), or deviation parameter 
 defined by equation (4.25) in

Authier (2001).5

Finally, if reflection is neglected, the external wavefunction

(65) is given in the Laue geometry by [see equation (6.2.1) in

Sears (1989)]

 ðrÞ ¼
a expðik � rÞ z< 0

a0 expðik0 � rÞ þ a00 expðik00 � rÞ z> d

�
ð70Þ

and in the Bragg geometry by [see equation (6.2.2) in Sears

(1989)]

 ðrÞ ¼
a expðik � rÞ þ a0 expðik0 � rÞ z< 0

a00 expðik00 � rÞ z> d;

�
ð71Þ

where amplitudes a0 and a00 of reflected and forward-propa-

gating waves, respectively, are obtained by solving the

boundary-value problem. The requirement that  ðrÞ be

continuous at the entrance surface at z ¼ 0 and at the exit

surface at z ¼ d then gives the following for the two geome-

tries.

(i) Laue geometry

 00 ¼ a00 expðik00 � rÞ

¼ a
�

�1=2
þ

�2

�
þ 1

� �1=2
" #

expði�z�dÞ

(

�
�

�1=2
�

�2

�
þ 1

� �1=2
" #

expði�zþdÞ

)
2
�2

�
þ 1

� �1=2
" #�1

� expðik00 � rÞ for z> d ð72aÞ

and

 0 ¼ a0 expðik0:rÞ

¼ a
kz

kz þGhz

� �1=2
1

2ð�2=�þ 1Þ1=2

� ½expði�zþdÞ � expði�z�dÞ� expðiq1zdÞ expðik0 � rÞ

for z> d: ð72bÞ
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rearrange Sears’s formulae into a form suitable for comparison with our
results.
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(ii) Bragg geometry

 00 ¼ a00 expðik00 � rÞ

¼ a½2ð�2=j�j � 1Þ1=2
� expð�i�z�dÞ

�

j�j1=2
þ

�2

j�j
� 1

� �1=2
" #(

� expð�i�zþdÞ
�

j�j1=2
�

�2

j�j
� 1

� �1=2
" #)�1

expðik00 � rÞ

for z> d ð73aÞ

and

 0 ¼ a0 expðik0 � rÞ

¼ a
kz

jkz þGhzj

� �1=2

½expði�zþdÞ � expði�z�dÞ�

� expði�zþdÞ
�

j�j1=2
þ

�2

j�j
� 1

� �1=2
" #(

� expði�z�dÞ
�

j�j1=2
�

�2

j�j
� 1

� �1=2
" #)�1

expðik0 � rÞ

for z< 0 ð73bÞ

with

k0 ¼ kþGh � q1; k00 ¼ k; ð74Þ

for both Laue and Bragg geometries, where q1 ¼ q1ze3 is given

by equation (6.2.4) in Sears (1989). Introducing Bragg angle

�B and the departure �� from Bragg’s incidence of the

incident wave, the equation for q1z reads

q1z ¼ �
k2 sin 2�B

kz þGhz

�� ð75Þ

so that according to (90) q1z is equal to �=a3z or 
=a3z for the

Laue or Bragg geometry, respectively.

Now we may compare wavefunctions for the Laue (72a),

(72b) and Bragg (73a), (73b) geometries with our corre-

sponding formulae (57a), (59b) and (61a), (61b). We can see

that the results of both developments have the same algebraic

forms but with different parameters. The thickness of the slab

d is given by ðN þ 1Þa3z, the wavevector differences �z� (67)

are replaced by ~��L
z� (58) or ~��B

z� (62) and the parameter �=j�j1=2

(69) by zrsl (37) or yrsl (47). The formulae by Sears are

transformed into ours by replacing jkz þGhzj, representing

the z components of the diffracted beam in an infinite crystal,

by Kpqz, defined by (4), representing the diffracted wave on a

slab. This difference stems from the fact that Laue’s theory is

based on the expansions (64) and (66) appropriate for an

infinite (unbounded) crystal whereas our development

respects from the very beginning the two-dimensional trans-

lation symmetry of a crystal slab. The relation between

jkz þGhzj and Krsz is examined in detail in Appendix B, where

it has been found that

Krsz

kz

¼
jkz þGhzj

kz

þ
�� sin 2�B

cos �jcos � 0j
ð76Þ

with � and � 0 being the angles between e3 and the incident, k,

and reflected, K�rs , directions, respectively. Since �� is small,

we may conclude that the differences between Krsz=kz and

jkz þGhzj=kz are negligible when � and � 0 are not near �=2

(grazing incidence or emergence). But the diffraction at

grazing incidence or grazing emergence is not considered in

the present paper.

We proceed in comparing wavevectors k0 and K�rs of the

reflected wave. Comparing (74) and (4), we can see that the

component of the wavevector k0 parallel to the crystal surface

is just equal to kjjpq defined by (3). On the other hand, as shown

by (91), z components slightly differ, and whereas according to

(4) ðK�rsÞ
2
¼ k2, the modulus of k0 is not equal to k2,

ðk0Þ2 ¼ k2 þ q2
1. Furthermore, the phase factors

exp½�iðk � a3Þ=2�, exp½iðKþ00 � a3Þ=2�, ð�1Þl exp½iðK�rs � a3Þ=2� and

ð�1Þl exp½iðKþrs � a3Þ=2� in our formulae (57a), (57b) and (61a),

(61b) rendering the shift of the entrance crystal surface above

the first atomic plane by a3=2 and of the exit crystal surface

below the last atomic plane by a3=2 appear since the thickness

of the slab is considered to be ðN þ 1Þa3z and not Na3z (see

also Dub & Litzman, 2001a). These shifts are connected with

the boundary condition problem.

Having found wavefunctions, we may evaluate reflectivities.

Using (57b) and (61b), we get respective reflectivity of the

Bragg reflected wave in the Laue and Bragg geometries,

I>rs ¼
sin2
½ðN þ 1Þa3zð�=�Þðz

2
rsl þ 1Þ1=2�

z2
rsl þ 1

ðLaue geometryÞ ð77Þ

I<rs ¼
1� cos2½ðN þ 1Þa3zð�=�Þðy

2
rsl � 1Þ1=2�

y2
rsl � cos2½ðN þ 1Þa3zð�=�Þðy

2
rsl � 1Þ1=2�

ðBragg geometryÞ; ð78Þ

where

� ¼
ja1 � a2ja3z

2Q0

kðcos �jcos � 0jÞ1=2: ð79Þ

Naturally, (77) and (78) conform to the results of the standard

Laue theory [see equations (9.30) and (9.35) in Rauch &

Petraschek (1978)] if the thickness of the slab is ðN þ 1Þa3z

and � is considered to be the Pendellösung distance [see e.g.

equation (9.22) in Rauch & Petraschek (1978)].

6. Summary and concluding remarks

In this paper, we have treated the diffraction on a crystalline

slab as a multiple scattering problem based upon the Ewald

equations (10a), (10b). This approach overcomes the limita-

tions of Laue’s method (Sears, 1989).

We have considered from the very beginning the two-

dimensional symmetry of a crystalline slab. Thus, (i) the

wavevectors K�pqðkÞ of the diffracted waves in the Laue (þ)

and Bragg (�) geometries are given by (4), and (ii) the two-

dimensional interplanar and intraplanar lattice sums have

been calculated, the latter given by (14a), expressing rigor-

ously the local-field effects. The multiple-beam wavefunctions

above and below the slab are then given by (18a) and (18b),
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respectively, which are valid for any angle of incidence.

Amplitudes of the wavefunctions are determined by deter-

minants of fundamental matrices H (16) and M�pq (19a), (19b),

the elements of which are simple functions of ��pq ¼ a3 � K
�
pqðkÞ,

being given by the geometry and the wavelength only, and of

solutions  �pq of the dispersion equation (13). We have found

that the dispersion relation is represented for both coplanar

and non-coplanar diffractions by a ‘dispersion plot’ (20) with

poles ��pq, which are of crucial importance since, as indicated by

(7a), (7b), the confluence of two poles means that Bragg

reflection occurs. Thus the Ewald sphere is replaced by ‘the �
diagram’ (Fig. 1) and no three-dimensional dispersion surface

or approximate dispersion hyperbolae are introduced. With

‘the � diagram’, it is possible to find Bragg diffraction posi-

tions and also to predict the mutual influence of diffractions in

different directions. Furthermore, no boundary conditions

needed in Laue’s theory are to be applied. Thus, the question

of the nature of boundary surfaces does not appear.

Next we have shown that to handle particular cases it is

necessary to rearrange matrices H and M�pq into the forms

proper to evaluate quotients det M�pq= det H and

det Mþpq= det H by using formula (50) for evaluating the

determinant of a symmetrically partitioned square matrix. In

particular, considering that only two poles �þ00 and �þrs in the

Laue geometry or �þ00 and ��rs in the Bragg geometry may

coincide, the other ones being well separated from both �þ00

and ��rs , the problem can be reduced to a two-beam one. The

corresponding wavefunctions of the forward-propagating

wave and the diffracted one, given by (56a), (56b) or (60a),

(60b) for the Laue or Bragg geometry, respectively, are valid

for both coplanar and non-coplanar diffractions in and outside

the Bragg-peak region and thus should not be confused with

the two-beam approximation in the standard Laue theory.

Then, the solution in the Bragg-peak region is a special case of

the general solution. We have shown that in the Bragg-peak

region formulae (56a), (56b) and (60a), (60b) result in (57a),

(57b) and (61a), (61b), respectively, which have the same

algebraic forms as wavefunctions (72a), (72b) and (73a), (73b)

derived in the frame of Laue’s theory, but the parameters

differ, and the ‘mathematical’ boundary planes are shifted

from the corresponding surface atomic layers. The differences

in parameters could be understood if we take into account that

our development considers from the very beginning the two-

dimensional translation symmetry of a crystal slab, whereas in

the Laue theory the Schrödinger equation with the optical

potential possessing the full translation symmetry of the

unbounded crystal is to be solved and after that the interior

solution is matched to the exterior one.

Summarizing, let us point out that our approach based upon

the Ewald method yields the solution to the diffraction

problem that is valid generally and thus, in principle, it may be

applied to extreme cases outside the scope of the standard

dynamical theory of diffraction. In particular, we already

treated the diffraction at the Bragg angle near �=2 (Litzman et

al., 1996) or the influence of Bragg diffractions on the coplanar

and non-coplanar crystal truncation rod scattering (Litzman &

Mikulı́k, 1999). Our approach enables us to study other

extreme cases, such as the diffraction at grazing incidence or

grazing emergence (Authier, 2001, ch. 8), where three poles in

our dispersion relation (13) coincide. Then submatrices (51) or

(52) of the second order would have to be replaced by

submatrices of the third order, which contain all relevant large

elements, the dispersion relation becoming now an equation of

the third order too.

Concluding, let us mention that we have considered a

crystal with a cell containing one atom only. The general

solution of the diffraction problem found in Litzman (1986)

may be applied to a lattice with general basis but resulting

formulae for diffracted waves in such a transparent form as

derived in the present paper have hitherto been obtained for a

single atomic plane only (Dub & Litzman, 2001b). The case

with distributed cell content would be challenging also

because of the question of where to locate the boundary and

the question posed by Ignatovich et al. (1996) on forbidden

reflections.

APPENDIX A
Parameters l and g

The parameters � and 
 are defined by (26) and (38) for the

Laue and Bragg geometry, respectively. After inserting the

Bragg condition for the Laue geometry (7a) into (26), we

obtain

� ¼ �þ00ðkÞ � �
þ
pqðkÞ � ½�

þ
00ðkBÞ � �

þ
pqðkBÞ�

¼ a3 � k� a3 � K
þ
pqðkÞ � ½a3 � kB � a3 � K

þ
pqðkBÞ�

¼ a3z½KpqzðkBÞ � KpqzðkÞ þ kz � kBz�:

Analogously in the Bragg geometry,


 ¼ �þ00ðkÞ � �
�
pqðkÞ � ½�

þ
00ðkBÞ � �

�
pqðkBÞ�

¼ a3 � k� a3 � K
�
pqðkÞ � ½a3 � kB � a3 � K

�
pqðkBÞ�

¼ a3z½�KpqzðkBÞ þ KpqzðkÞ þ kz � kBz�:

If all the wavevectors k, kB, KþpqðkÞ, KþpqðkBÞ or k, kB, K�pqðkÞ,

K�pqðkBÞ in the Laue or Bragg geometry, respectively, and the

normal to the crystal surface, e3, oriented towards the inside of

the crystal lie in the same plane (the case of coplanar

diffraction), we can write kBz ¼ k cos �B, kz ¼ k cosð�B þ��Þ
and KpqzðkBÞ ¼ �k cos � 0B, with the sign þ and � for the Laue

and Bragg geometry, respectively, where �B and � 0B are the

angles between e3 and the incident and reflected directions at

Bragg’s incidence, respectively. Then for small ��, we find

after lengthy but easy algebra that

� ¼ �a3zk2 1

Kpqz

sinð�B � �
0
BÞ�� þO½ð��Þ2� ð80Þ

and


 ¼ a3zk2 1

Kpqz

sinð�B � �
0
BÞ�� þO½ð��Þ2�: ð81Þ

Next we introduce the Bragg angle �B ¼ j�B � �
0
Bj=2 and the

departure from Bragg incidence of the incident wave ��. In

research papers

220 P. Dub and O. Litzman � Ewald dynamical diffraction theory Acta Cryst. (2005). A61, 209–222



both the Bragg and Laue geometries, two different situations

may occur.

(i) Laue geometry: (i1) if �B >�
0
B then �� ¼ ��; (i2) if

�B <�
0
B then �� ¼ ���.

(ii) Bragg geometry: (ii1) if �B >�
0
B then �� ¼ ���; (ii2)

if �B <�
0
B then �� ¼ ��.

Considering all above possibilities, from (80) and (81) we

obtain finally

� ¼ �a3zk2 1

Kpqz

sin 2�B��þO½ð��Þ2� ð82Þ

and


 ¼ a3zk2 1

Kpqz

sin 2�B��þO½ð��Þ2�: ð83Þ

APPENDIX B
Relation between jkz þGhzjjkz þGhzj and KrszKrsz

The vectors K�pqðkÞ defined by (4) can be expressed in two

coordinate systems (b1, b2, e3) and (g1, g2, g3):

K�pqðkÞ ¼ kjj þ pb1 þ qb2 � e3KpqzðkÞ

¼ kþ y1g1 þ y2g2 þ y3g3:

As gjj1 ¼ b1, gjj2 ¼ b2, we get y1 ¼ p and y2 ¼ q. Thus,

K�pqðkÞ ¼ kþ pg1 þ qg2 þ y3g3: ð84Þ

Multiplying the last equation by a3, we obtain ��pq ¼ �
þ
00 þ 2�y3

[cf. definition (6)], so that

y3 ¼
��pq � �

þ
00

2�
: ð85Þ

Using (84), we get

KrszðkÞ ¼ e3 � K
�
rsðkÞ

¼ �ðkþ rg1 þ sg2 þ y3g3Þ � e3

¼ �ðkþ rg1 þ sg2 � lg3Þ � e3 � ðy3 þ lÞg3 � e3;

where the signs þ and � correspond to the Laue and Bragg

geometries, respectively. Considering that Gh ¼

rg1 þ sg2 � lg3 and y3 is given by (85), we find that the term

Krsz is related to the following terms as given below.

(i) In the Laue geometry

Krsz is related to kz þGhz > 0 by

KrszðkÞ ¼ kz þGhz þ ð�
þ
rs � �

þ
00 þ 2�lÞ

g3 � e3

2�

¼ kz þGhz � �
1

a3z

; ð86Þ

where the parameter �, defined by (26), is, in the case of

coplanar diffraction, given by (82).

(ii) In the Bragg geometry

Krsz is related to jkz þGhzj, kz þGhz < 0, by

KrszðkÞ ¼ jkz þGhzj � ð�
�
rs � �

þ
00 þ 2�lÞ

g3 � e3

2�

¼ jkz þGhzj þ 

1

a3z

; ð87Þ

where the parameter 
, defined by (38), is, in the case of

coplanar diffraction, given by (83).

Finally, introducing (82) into (86) and (83) into (87), we get

for either geometry

Krsz ¼ jkz þGhzj þ
k

jcos � 0j
�� sin 2�B þO½ð��Þ2� ð88Þ

and consequently

Krsz

kz

¼
jkz þGhzj

kz

þ
�� sin 2�B

cos �jcos � 0j
þO½ð��Þ2�; ð89Þ

where � and � 0 are the angles between e3 and the incident, k,

and reflected, K�rs , directions, respectively. Since �� is small,

we may conclude that the difference between Krsz=kz and

jkz þGhzj=kz is negligible when � and � 0 are not near �=2.

Finally, inserting (88) into (75) under the assumption that �
and � 0 are not near �=2, we get

q1za3z ¼ �þO½ð��Þ2� or 
þO½ð��Þ2� ð90Þ

for the Laue and Bragg geometry, respectively. Then after

inserting (90) into (74) and considering (88), (82) and (83), we

get that

k0z ¼ Krsz þO½ð��Þ2�: ð91Þ
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