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1. Introduction

Ninety years ago, from 1912 to 1916, P. P. Ewald was devel-
oping the fundamentals of the theory, now called the Ewald
dynamical theory of diffraction [see original papers by Ewald
(1916, 1917) and a memorial volume for P. P. Ewald (Cruick-
shank et al., 1992)]. Ewald considered a crystal as a three-
dimensional array of electric dipoles fixed at the lattice points.
Oscillating dipoles generate electromagnetic fields, which,
superimposed upon the external wave, force dipoles to oscil-
late. The fields propagating inside the crystal must be such as
to produce excitations of all scatterers that are in full equili-
brium with the fields themselves. The problem of Ewald has
been the mechanical problem of forced oscillations of a system
of electromagnetically coupled oscillators where no boundary
conditions appear. Thus, the Ewald discrete dipole model was
recently used successfully in surface optics (Dub, 1983; Wijers
& Poppe, 1992; de Boeij et al., 1996).

Later, the Ewald concept was applied to neutron scattering
where the interaction potential is replaced by the Fermi
pseudopotential (Dederichs, 1972; Sears, 1989). The Lipp-
mann-Schwinger equation for the multiple scattering on a
system of §-function potentials yields a self-consistent system
of equations, which are the quantum-mechanical analogue of
equations first introduced by Ewald to describe the multiple
scattering of electromagnetic radiation.

On the other hand, in the dynamical theory of diffraction of
Bethe and von Laue, the crystal is considered to be a con-
tinuum described by the periodic potential. Since the potential
is discontinuous at the surface of the sample volume V, one
must find separate solutions inside and outside V and then
match the exterior and interior solutions by boundary condi-
tions. The mathematical solution of the problem based on a
macroscopic and phenomenological procedure raises the
question about the nature of the border surface and, as
pointed out by von Laue (1941), the boundary conditions

and a detailed comparison of the final formulae obtained with those following
from Laue’s theory is performed.

problem is ‘the weakest point of the theory’. The boundary
conditions problem was also mentioned by other authors
(Pinsker, 1978; Authier, 2001; Dub & Litzman, 2001b).
Furthermore, as pointed out by Sears (1989): ‘The accuracy of
the results obtained by the Laue method is limited by the
accuracy of the elementary expressions for the optical
potential, which neglects local-field effects. This limitation is
overcome in the Ewald method, which ... consists in finding a
systematic self-consistent solution of the Ewald equations. In
the Ewald method the local-field effects are taken rigorously
into account.’

Ewald’s theory has been mostly connected with the theory
of dispersion (Authier, 2001, pp. 41-48) and detailed
comparison of the dispersion theories by Ewald and Laue was
done by Wagenfeld (1968). On the other hand, authors
interested in the theory of reflection and diffraction have
adopted the Laue method (see e.g. Rauch & Petraschek, 1978;
Sears, 1989; Authier, 2001). In our series of papers (Litzman &
Rézsa, 1977; Litzman, 1978, 1980, 1986; Litzman & Dub, 1990;
Litzman, 1991; Litzman et al., 1996; Litzman & Mikulik, 1999),
however, we have further developed and applied the Ewald
concept of the dynamical diffraction theory. In particular,
papers by Litzman (1986) and Litzman et al. (1996) have been
devoted to the problem of the multiple diffraction of neutrons.
In Litzman (1986), the solution of the quantum-mechanical
Ewald equations was expressed in a lucid matrix form and
amplitudes of the diffracted waves were then obtained in well
arranged determinant forms, which are valid quite generally.
These results may be adopted to deal also with the cases
outside the scope of standard dynamical diffraction theory
(Litzman & Dub, 1990; Litzman & Mikulik, 1999). In our
recent paper (Litzman et al., 1996), the case of a semi-infinite
crystal was dealt with, the results obtained being valid for
arbitrary angles of incidence, including grazing incidence,
Bragg angle near /2, near or far from the Bragg peaks. In the
present paper, using general derived results, we will treat
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rigorously the diffraction on a crystalline slab and perform a
detailed comparison of results obtained with those following
from Laue’s theory.

2. Exact multiwave formulae for the reflection and
transmission of neutrons on a crystal slab

2.1. Geometrical theory
Let us consider the scattering of neutrons on a system of
point scatterers forming a slab
R,, = m;a; +m,a, + msa;,
my,my, =0,%1,£2, ..., oo,

m = (my, my, my),
my=0,1,2,...,N. (1)

The origin of the orthogonal coordinate system Oxyz lies at
the lattice point (0, 0,0), the plane Oxy coincides with the
entrance crystal surface plane (a;, a,). The axis Oz (unit vector
e3) and the vector a; x a, point into the crystal. The lattice
(g1, 8, 83) is reciprocal to the three-dimensional lattice
(aj, az,a3), Le. g - a, =218, (i, k=1, 2, 3), whereas the lattice
(by, by) is reciprocal to the two-dimensional lattice (aj, ay), i.e.
b; L es, b, - a, =278, (i, k=1, 2). With ¢l and ¢+ denoting the
components of the vector ¢ = ¢!l + ¢ parallel and perpendi-
cular to the surface, respectively, we have g‘]| =b, gg =b,,
g|3| = 0. Further,

f(r)=Aexp(ik-r) with k,>0 2

represents the plane wave incident upon the entrance crystal
surface.

(-1,-2)
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-1,0)

(0.0
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Figure 1

I' diagrams l";rq(y) for the Laue geometry (full line) and I, (y) for the
Bragg geometry (broken line) for the b.c.c. lattice with a, = a(1, 0, 0),
a, = a(0,1,0), a, = (a/2)(1,1, 1), a/A = 0.875 and k' parallel to a, + 2a,,
a; and a, lying in the crystal surface plane. For (p, q) other than those
given in the figure, the values of K, from (4) are purely imaginary in the
whole interval of y. The angle y,, or yp, is the angle of incidence, for
which the Bragg condition (8a) or (8b) for the Laue or Bragg geometry,
respectively, is satisfied. Diffractions with (p,q) = (0,0), (1,2) and
(—1,—2) are coplanar and the others are non-coplanar. [y (y)
corresponds to the specularly reflected wave.

Owing to the two-dimensional discrete translation
symmetry in the surface plane (a,, a,), the components of the
wavevectors parallel to the crystal surface of diffracted waves
are of the form

kgq =k''+pb, +gb,, k! =k —k,e;, p,qbeing integers.

(©)

Then considering merely elastic scattering, the wavevectors
K;“q(k) and K, (k) of the diffracted waves in the Laue
(transmission) and Bragg (reflection) geometry, respectively,
are given by

K. (k) =kl +eK, (k) with K, (k) =—+[k* — (k)]
(4)

Using this notation, K, = k is the wavevector of the incident
and forward propagating waves and K, is the wavevector of
the specularly reflected wave. From (4), it can be seen that
there is a finite number, say n, of different couples (p,q)
(depending on the wavelength A of the incident radiation and
the angle of incidence y) yielding 2n radiative waves with real
K, (k). Other (p, q) correspond to non-radiative waves with
pure imaginary K,,,.(k).

As the wavevectors Klfq are given by (4),' two Laue equa-
tions are satisfied automatically, viz a, - (k — Kpiq) = —2mp,
a, - (k— K[fq) = —2mq. Thus, should the incident wave (2)
fulfil the Bragg condition, the third Laue equation must be
satisfied, i.e. for its wavevector kg

a; - [ky — K (kp)] =27/ (Laue geometry) (5a)
and/or
a; - [ky — K, (k)] = 27/ (Bragg geometry)  (5b)

must hold, the diffraction vector being pg, + gg, — Ig; with [
integer. We introduce

05 (k) = a, - K, (k) = a} - k!, £a;.K,,.(K), (6)
so conditions (5a) and (5b) read

6o0(kg) — 07, (kg) = 27/ (Laue geometry) (7a)

6oo(kg) — 0, (kg) = 27l (Bragg geometry). (7b)

In most experiments, the plane of incidence and the wave-
length are kept constant and only the angle of incidence y
(measured from the inner normal to the surface) varies. All
quantities in (6) are then functions of the angle y and (7a) and
(7b) can be expressed as

F;q(y;q,) = 2nl (8a)
and

l";q(yfq[) = 2ml, (8b)
where

L) = 650(¥) = (). )

I See also equation (84).
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Then the diffraction condition may be visualized by ‘I’
diagrams’. In Fig. 1, we give the plot of I';, and I, versus y €
(—90°, +90°). The intersections of the plots of I'}, (y) or[',.(¥)
with the horizontal straight lines 27/ give Bragg reﬂectlons for
the Laue or Bragg geometry, respectively. In particular, since
[ (£90°) = 0, the total reflection at grazing incidence can be
considered as a special case of the symmetrical Bragg reflec-
tion (8b) with (p,q) = (0,0) and [ = 0 (see Litzman, 1991).
Furthermore, the points (e.g. ¥5;) where I' diagrams for the
Laue geometry I'J, and for the Bragg geometry I', —stick
together, and thus 9+ — 6,,, should be mentioned since it
happens if K,,, — 0 Wthh indicates grazing emergence.

2.2. Quantum-mechanical analogue of Ewald’s theory for the
diffraction of neutrons

The Ewald dynamical diffraction theory, generalized to
quantum mechanics, yields the following equations for the
wavefunction W(r) describing the diffraction of neutrons on a
crystal slab formed by identical point-like scattering centres
(Dederichs, 1972; Sears, 1989):

W) = ) - ZQMCD“(RH)

R (10a)

with
exp(ik|R,, — R, )

O"(R,) = f(Ry) = D 05 —pm

n#m
W(r) is the total field at the point r, ®™(R,,) is the field incident
on the scatterer at R,, (local field) and f(r) represents the
incident wave (2). The point-like scattering centres are
described by the scattering length

0 =(Q; +ik™, (11

where Im Q, < 0. In the case without absorption, which will be
considered in the following, this condition should be under-
stood in the limit Im @y — 0~. The theory is applicable for
both positive and negative scattering lengths. Nevertheless, in
the following we will consider the most common case with
Q> 0.

Because of the two-dimensional translational symmetry of
our problem, the solution of (10b) can be expressed as a
superposition of plane waves

D"(R,). (10b)

nynyny — Al |a; < a,| ;
@ (R,) = exp[ik" - (n,a; + nya))] ZTC/' exp(ins ;)
=y
c exp(lk R,) (12a)

with the wavevectors
l;i =kl + (1/27)(¢; — k' -a)g =K'+ I;jze3’

i.e. wj =a, -k/.,

(12b)

characterizing the local field.

Substituting the Ansatz (12a) into (10b), we get the
following.
(i) The dispersion relation for the parameters

1 +S00 + 27ias, { 1 [ .exp(iH;I) .
Q |a1 X 22| Pq a3zquz eXp(lI/f) - exp(legj;;
—i6-
.GXP( 1 pq) _ ]} -0, (13)
exp(—iv)) — exp(—if,)

where poles GPiq are given by (6) and

exp(ik|n;a; + nya,|)
|nja; + nya,|

S'(k) =
(111,n2)#(0,0)

xp[ik” - (nja; + nya,)]
(14a)

is the well known two-dimensional interplanar Ewald optical
lattice sum (Dub & Litzman, 1983), the imaginary part of
which is

21 1
—— — — k.
a, Xa K
| 1 2| K[z)qz>0 pqz

ImS'(k) = (14b)

(i) The inhomogeneous system of linear algebraic equa-
tions for the amplitudes c;:

exp(—ifg, .

Hce = —Ak, ,
Q

(15)

where
c=llc;,cp...hcll" and e=1,0,0,...,0]"

are column vectors and H is square matrix of order 2n,

Acta Cryst. (2005). A61, 209-222

P. Dub and O. Litzman - Ewald dynamical diffraction theory 211



research papers

1 1 1 1 1 1 1 1

T vt vt U vt e v e vt - oyt T

xoo )’oo pa — Yoo Xgn — Yoo Xuvy = Yoo | ¥oo — Yoo *¥pg — Yoo Xgn — Yoo X — Yoo
1 1 1 1

+ _ o+ - T ot | v o — v o — vt —F

*00 ~ Ypq *p ypq gh ypq Xuv = Ypg | %00 = Ypg Xpg — Vg Xeh T Vpq Xuy = Vpg
1 1 1 1 1

+ e —

xoo ygh Xp ygh gh ygh Xy ygh X00 = Veh Xpqg — Ygh Xgn — Ve Xuv — Vg
1 1 1 1 1 1 1 1

- UF vt e — v o — vt o — v = — ot

xOO yuv x yuv gh yuv Xy Yuv | *o0 Yuy qu Yuv xgh Yy Xuy Yuy

H = N+1 N+1 N+1 N+1 (16)

+)N+1 +\N+1 —\N+1 - - N+1
(x()()) (X ) (X ) . (x (XOO) (qu) (xgh) . (xuv)

Xgo — Yoo Xy — Yoo X gh =Yoo X — Yoo | Xo0 — Yoo Xpg — Yoo Xgu — Yoo — Yoo

+ )N+ N+L (t)N+L +\N+1 —\N+1 (= YWN+L (= )N+1 N1
(‘xOO) ( ) (x ) . (xuv (xOO) (qu) (xgh) . ('xuv)

Ny plq N):_ ; x Nyflq x5 Ny plq X00 _Ny plq Xpq _N):qu Xeh _N)jflq Xuy _Ny plq

+ + N+ — \N+ - - —\N+

(xoo) (x ) (xgh) o (x;h, (x%0) (qu) (xgh) . (x3,)

_ + + _ oy — VT Y — v ¥ — v - _ vy

00 ygh X ygh Xgh ygh Xuv ygh Xo0 ygh qu ygh xgh ygh Xuy ygh

)N+ N+1 N+1 LW —\NHL (= WAL (= \N+1 N+1
(x50) (x ) (x ) o (x (x00) (qu) (xgh) o (xuv)
+ — v — Vv X~ — V- X~ — v— _

xOO yuv x yuv gh yuv uv Yuv | *o0 Yuy qu Yuv xgh Yuv Xy yuv

where the following notation has been used

Vi = exp(ifiq), (17a)
for all n real 6}, and all n real 6, and
X = exp(i) (17b)

with v/, and v/, being solutions of the dispersion relation (13).
Inserting the plane-wave superposition (124) with the
amplitudes ¢; given by (15) into (10a), we get the external
wavefunctions W=(r) and ¥7(r) above (z <0) and below
(z > Nas,) the crystalline slab, respectively (Litzman, 1986),

W=(r) = Aexp(ik - 1) — Ak, exp(—ik - ay)

d
X Z |:(Kiqz> oM exp(l ) exp(iK,,, - r)]

detH

Equations (18a), (18b) are the exact multiple-beam solution of
Ewald’s equations (10a), (10b), which are valid for any angle
of incidence and both coplanar and non-coplanar diffractions.
To apply them, it is necessary to find solutions of the disper-
sion relation (13) and then to evaluate quotients
detM /det H and detM;, / det H.

3. Dispersion relation

The dispersion relation (13) which is of crucial importance for

— Aexp(ik - 1) — Z 0 (18a) the dynamlcal theory o.f diffraction was discussed in detail in
o our previous paper (Litzman et al, 1996). Let us recall the
1\ detM* most important general results. First we recall that (13) may be
U~ (r) = Ak, exp(—ik - a3)z S brought into the following form appropriate for finding its
‘ K detH .
pq pqz solutions
 expl-INGj,) expK, )| L")+ L5 = hyfl + QRe[SM)  (20)
with
Z (). (18b)
The matrices M,,, and M;“q of order 2n differ from the matrix H
defined by (16) in the first row only. Their first rows read
(VL) . . . . . . . (19a)
= e - — — — — — — a
Par 00 =Yg Xpg T Vpq x;l ~ Vg w = Ypq Y00 = Ypa  *pg T Ypa  Fen T Vg Xuv ™ Ypg
( )N+1 (x+ N+1 (xJ,rh)NH (x+ N+1 (x_ )N+1 (x* )N+1 (xTh)NH (x;v N+1
IOV )l = [ — e - s A SR s (19D)
ypq Xp _ypq Xeh — Vpq Xuy _ypq X00 ~ Vpq “Ypa Xeh T Vpq Xuy — Vpq
212 P.Duband O. Litzman - Ewald dynamical diffraction theory Acta Cryst. (2005). A61, 209-222
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) () 1 sin(a;.K,,,.)
L7 () = —3 ; as. K. sin[(y — 6;)/2] sin[( — 6,.)/2]
K121112>0

(21a)
1 |:exp(—a3z|quZ|) — cos(1/f—a‘3I . kﬂq):|
|

L=(y) = Z K cosh(a,, |K,,.|) — cos(y—a) 'kf‘v‘q)

Pq a3z| gz

2
K2,,<0

1)

being the finite and rapidly convergent infinite sums over all
(pq) for which K, . is real and purely imaginary, respectively.
Furthermore,

_ lay xay
=
2mas, Q,

and the term Q,Re[S'(k)], being of order 1/h,, can be
neglected for /s >> 1. It is worth noting that the right-hand side
of (20) is real because in the dispersion relation (13) the
imaginary part of 1/Q, being equal to k, cancels exactly with
the term —k in the imaginary part (14b) of the interplanar
lattice sum, which results from the fact that the local-field
effects are taken rigorously into account.? If we put Q, equal
to the bound scattering length, the parameter A, is related to &
defined by equation (3.1.7) in Sears (1989) by?

_ 2
O Ead kP

(22)

(23)

The function on the left-hand side of (20) has poles for
6, +2m and 6, + 27m, the positions of which are given by
the geometry and the wavelength only, whereas the right-hand
side of (20) depends on the strength of the interaction
between neutron and scattering centres. Thus, each solution of
the dispersion relation may be associated with one pole G;rq
and/or 6,.. We denote them by vf and v, respectively. The
distance [y, — 67 | and/or [y, —6, | is the smaller the
greater the value of h,. Considering neutron diffraction where
ho > 1, each solution vrf (¥ ) lies ‘very’ near the corre-
sponding pole 6, (6,,). In the simplest case when the pole 6,
and/or 6, is far (mod 27) from any other poles, we get directly
from (13)

exp(iv,,) = exp(if;,)[1 xiB,, + O(hy )], (24)
where
1 ay k*
e Y S @5)
093z *pqz Pqz

The more complicated problem arises when some poles of
dispersion relation almost coincide (mod 27). Special atten-
tion should be paid to the confluence of two particular poles,
namely 6;5(k) and 6},(k) and/or 9, (k) and 6;,(k), the former
representing the Bragg diffraction condition for the Laue
geometry and the latter for the Bragg geometry.

% In the electromagnetic case, the Lorentz radiation damping i(2/3)k> is also
cancelled by the imaginary part of the optical lattice sum (Vlieger, 1973;
Litzman & Dub, 1982).

3 See §5.

(i) Laue geometry
Let us consider the two poles 6, and 6,

s>

0(-)% - 9+ = 2”1 + /’Lé)(),r.w

rs T

|itho.s| <7 and [ is an integer,
(26)

which may coincide when gy, ,, — 0, and it is assumed that the
other poles are well separated from both 6, and 87, (mod 27).
In the following, we will use the simple notation y,f)o,,s = /.

Then we separate the terms corresponding to the poles 6
and 6 in (13), converting it into the form

o oy
o) exn ) P i) = gy ~
27)
where B, is given by (25) and
G = 1 o, — 122 P a0
with
sin(yr — ;)

Uoo,rs(W) = QyRe[S'(K)] + By 201 — cos(¥ — 6y )]

sin(y — 6,,) 1

/ 1
* 'BKY 2[1 - COS(I//_GZ-)] 271’10 ; { a3zKuvz
(uv)#(00)
(uv)#(rs)
Kiiyz>0
Sin(a3zKuvz) } 1
X = — ——L=(y).
sin[(y — 6,5)/2]sin[(y — 6,,)/2] | hy
(28b)

As the term QyRe[S'(k)] is of order 1/h,, the value of the
function oy, (), having poles for all 8}, and 6,,,, except
and 0}, is, outside the poles 8/, and 0, of order 1/h,,.

To find solutions of (27), ¥, and ¥, which are associated

rs?

with the poles 8, and 67, let us put on the left-hand side of

Fs?

(27) x = exp(iyy) and formally solve for x the quadratic
equation obtained. Then, after some lengthy but easy algebra,
dispersion relation (27) yields two equations:

exp(iiy) = exp(w&,){l Srowers [(ﬂooﬂm)“zim,m(wa))
00,rs 00

O — 04
X exp <1 TOO) - .300] }

. . i -
eXp(lwrt) = eXp(IGZ {1 + + [(ﬁOOIBrs)I/ZZOO,m(wZ
GOO,rs(Wrs
05, — 6+
X exp (i 0 ”) + ,BU:| },
2
where

Zso (W) = Zyg s(W) — S[Z g s (W Z50,,(W) + 11 (30)

with

(29a)

and

(29b)
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1 0k — 6
Zyy (W) = 2(130()’3”)1/2 {(/300 ﬂn)COS< 3 )

HMMMMmczm”- (1)

Here and in the following s(X) means the sign of X. Let us
note that for Z&),m(lﬂ) the condition |Z&J’,s(1//)| <1 holds.

Next we will look for appropriate approximations in (29a),
(29b). The right-hand side of (29a) and/or (29b) depends on
Vo and/or ¥} through oy, (V). As ¥ and ¥ are near to the
poles 6, and 6;}, both oy ,,(¥g,) and O’OOJS(K//”) are very small
(of order 1/h,) and, therefore, we may put in (29a) and (29b)
Gyo.s(¥) =14 O(hg"). In this approximation, (29a) and (29b)
yield

eXP(“poo) = exp(it) 0){ i[(ﬂooﬂrs)l/z(_l)lz&),m

x exp(=i5) = A | + 005 (320)
and
exp(l ;t) = eXp(lej; {1 + 1|:(ﬂ0018r5)1/2(_1)12&),r5
x exp(i %) + ﬂ} + O(hgz)}, (32b)

where u has been introduced by (26) and Z&m (not depending
on V) is given by (30) with Z, . (¥) being replaced by

=) +250()].

Z =/ =—"
o ® 2(130013rs)1/2
(33)

which now does not depend on . It is worth noting that if p
increases, which means that the poles become separated, Z&m
goes to zero and consequently (324) and (32b) reduce to (24).

On the other hand, for Bragg reflection, where u — 0, (33)
may be approximated by

0 __ (D
80 = 2B

which depends linearly on the parameter u expressing the
deviation from the Bragg diffraction condition. As
,, = O(hy') and |Zy, .| <1, (32a) and (32b) yield, respec-
tively,

1/f:)ro - 9&) = ,300 -
and

:; - 9&) = By — (ﬂ()()ﬂm)l/z (2,4 + S(Zr.vl)(zzvl + 1)1/2]-

From (35a) and (35b), it can be seen that when the sign of z
is changed the solutions v, and v interchange.

If the reflected wave does lie in the plane of incidence
(coplanar diffraction), the parameter p is related to the
departure A® from Bragg’s incidence of the incident wave
(see Appendix A) by

[(IBOO ﬂrs) + /’L] = ( 1)l st (34)

- S(er[)(zzs[ + 1)1/2]

(ﬂooﬂrs)l/z (2, (35a)

(35b)

rsl

1
n= —a3zk2K—sin 20,A0, (36)

rsz

where ®g is the Bragg angle. Then substituting p from (36)
and f,, from (25) into (34), we get

T/ N2 7N 27k 2
a=—=[1-=) - +-| = sin2@5 A0 |.
2 kZ KV»YZ é KVSZ

(37)

(ii) Bragg geometry
Now we will consider the two poles 6, and 6 related by

g ! ! . .
o0 — Oy = 27l 4 1g,5»  |100,s| <7 and [ is an integer,

(38)

which may coincide when 15, ,, — 0, and again suppose that
the other poles are well separated from both 8, and ;. In the
following, we will again use the simple notation 7}, ,, = 7.

Analogously to the Laue geometry, we separate the terms
corresponding to the poles 85, and 8;; in (13) converting it into
the form

. exp(ify,) : exp(—if,,)
o0 pG9) — expli) T P exp(—i9) — exp(—i6,)
= FOO,rs(W)’ (39)
where B, is given by (25) and
Fy, s =1+ Poo, () — 1IBOO —zi_ Pr (40a)
with
. , sin(Y¥—6y)
@oo.rs(¥) = QpRe[S'(K)] + By 201 — cos(¥—b)]
sin(y—0% 1 / 1
_mm—mwwm+%'w{%mn
(uv)#(00)
(W)#(VS)
K,M>0
Sin(a3zKuvz) <
Xmﬂw—ammhmﬁw—@nﬂﬁ‘7iL(w’

(40b)

which has poles for all 8}, and 6, except 6}, and ;; and is,
outside the poles 6} and 6, of order 1/h,.

Next we proceed quite analogously as in the Laue geometry.
Then, in the approximation Fy,,,(y) = 1+ O(hg"), we get

eXp(ll//&)) = exp(l@&)){l - i[(ﬂooﬁrs)l/z(_l)l?(m,m

x exp( ) ﬂoo} oy 2)} (41a)
and
exp(iy,) = exp(ie,:){l + i[(ﬁooﬁ,s)”z(—l)l?m,m
x exp(i g) - ,B,S] + O(hoz)}, (41b)

where
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ﬁ;o,m = Yoos — S(YOO,KY)(Y[%OJX -2 (42)
with
Yo = Vo = s [ () 290
) (43)

It is worth noting that for Y&J »s defined by (42) the condition
|Y00 ()] <1 holds and if n increases Y00 . goes to zero and
consequently (41a) and (41b) reduce to (24).

Finally, for the Bragg reflection, where n — 0, from (41a)
and (41b) it follows, respectively, that

lpo+0 - G(J)ro = Bo — (:B()Oﬂrs)uz[yrvl S(yrvl)(yrvl - 1)1/2] (44a)
and
w&; - 63;) = ﬂOO - (ﬂOOIBrs)l/z[yrsl + S(yrsl)(y%sl - 1)1/2]9 (44b)
where
1
Vet = 2B B [(Boo + By) + 1l (45)
00Frs

depends, like z,,;, defined by (34), linearly on the parameter
expressing the deviation from the Bragg diffraction condition.
From (44a), (44b), it can be seen that when the sign of y, is
changed the solutions ¥}, and ¥, interchange and, moreover,
if |y,y| <1, solutions v/, and v, are complex conjugated.
As in the Laue geometry, in the case of coplanar diffraction
the parameter 7 is related to the departure A® from Bragg’s
incidence of the incident wave (see Appendix A),
n= —l—agzk2 e Sin20;A0O (46)

rsz

and then y,; reads

1 (k. 1/2 KN 2/ kN2

(47)

Let us recall that (35a), (35b) with z,, given by (37) and
(44a), (44b) with y,,, given by (47) result from the two-beam
dispersion relation for coplanar Bragg reflections in the Laue
or Bragg geometry, respectively.

Furthermore, considering (6) and (12b), we get

qu 900 Epiz1 — a3 K(J)ro
= (a” K as, pqz) — (21‘3| Kkl + as.k.,)
= agz( D —k,). (48)

Thus (35a), (35b) and (44a), (44b) give the differences
between the z components of the wavevectors of the local field
and the incident beam.

4. Wavefunctions

The wavefunctions of the diffracted waves are given by (18a)
and (18b) where quotients

detM,,/detH and detM; /detH (49)

are to be evaluated. First we will analyse qualitatively the
values of elements of the matrices H, M,,, and M+ As each
solution 7 (¥,) lies ‘very’ near the correspondlng pole
9;, (6,,), all elements on the main diagonal of H are always of
order h(, whereas the values of its elements outside the main
diagonal depend on the respective positions of poles. A similar
conclusion holds for the matrices M, and M;q which,
however, contain in their first rows the large element
1/(x,, — y,,) andlor (x;, Nt (x}, — y,), respectively, being
always of order h.

Taking into account the above qualitative assertion, it is
possible to evaluate quotients (49) for particular cases in a
defined approximation. To calculate the determinants in (49),
the following formula for evaluating the determinant of a
symmetrically partitioned square matrix will be used:

11A 12A
det A = det| N H

= (det?A) det[''A

_ 12A(22A)71 21A], (50)

where A is a (non-singular) square submatrix of A.

In the following, we will handle the case when by changing
the direction of the incident beam one pole only, say 6, in the
Laue geometry, and/or 6, in the Bragg geometry, may
approach 6}, which yields the Bragg diffraction condition, the
other poles being well separated from both 6, and 6}, and/or
0. Thus, in the following we will treat two external waves in
the Laue geometry, viz one with K, = k and one with K}, and
two external waves in the Bragg geometry, viz one with
Kj, =k and one with K. To evaluate the corresponding

quotients (49) by using (50), we express the matrices H, M

and M,; in the following block form
llA 12A
A=|x A Z2A |

where the elements of the submatrix ! A may be of order A,
whereas all matrix elements of A and *A are always of
order 1. The square submatrix ' A is therefore of order 2 and
reads:

(i) in the Laue geometry

1 1
+ _ vyt
Y — xoo )’00 X — Yoo
1 1 ’
+ _ o F Xt —yt
xOO yrs yrs
+ \N+1 +\N+1
(xg0) (%
+ o+ + _ yt
11M+ _ [ *oo Vis  Xis Yrs
rs T
1 1
+ _ yt
xOO yrs xrs yrs
and
+ \N+1 +\N+1
(x()o) (x
xt - —
HM(J{O _ | *oo — Yoo X5 — Yo : (51)
1 1
xOO yrv )C;; - y;t

Acta Cryst. (2005). A61, 209-222

P. Dub and O. Litzman - Ewald dynamical diffraction theory 215



research papers

(ii) in the Bragg geometry

1 1
|1H _ - y(-]t) rs T y&)
- (xaLO)NH (x )N+1 ’
0 " Y X — Vs
1 1
Una— xOO YVis rs — Vrs
Mrs - (xaro)NH (x )NH
00 " Vs Xp T Vs
and
()™ (xm)N !
+ +
Ung+ _ |[ %00 =Yoo Xps — Yoo
My, = (x(%)N+1 (x—v)N+1 : (52)
Xo0 = Vrs  Xis T Vis

We now set out to calculate the external waves for both
Laue and Bragg geometries.

(i) Laue geometry

As ZH = M. = 2M{,, by using (50) and (51) we get
detMf  det" M
0 _ _ 0 4 O(h?)
detH det" H
xOO yrs )N+1 r: - y;z H\N+1
x(To - Y(J)ro o 5= (To 2
— s O(h= ,
xOO yrs xj; _ng * ( 0 )
xoo )’00 x5 = y&)
(53a)

which determines the amplitude of the external beam with
K, =k, and

detM;;  det'' M

detH  det''H + Oh™)
N+l _  +\N+1

(XOO) ( — +O(/’laz), (53b)
xOO yrs _ rs — Vs

— + _ yt
yOO Xos Yoo

which determines the amplitude of the external beam with K.

The fractions (xdy — v/ (xdy — i) and
(xt —yH)/(xt —ydy) in (53a), (53b) may be evaluated by
using (32a), (32b). After some algebraic manipulations, we get

172
X&) _yr: _ exp( 9(_)5 9:;) (KOOZ)
Xoo — Y()o 2 K,

x[Z, +S(Z)NZ + 1)'* + O(hg)]  (54)

X5 =V 05 — 000\ (Koo i
——— = —expli —=
x;t - y(TO P 2 Krsz
X [er - S(er)(Ziq + 1)I/2 + O(haz)] (55)
with Z,  being defined by (33). Finally, after inserting (54) and

(55) into (53a), (53b) we obtain from (18b) the wavefunctions
of the two external waves in the Laue geometry:

and

Wi = A({expliwly — G 12, +5(Z )7 + 1]
{expliWE — G Z, — (22 + 1)”2])
x [28(Z, )(Z} + 1)1 exp(iKy, - 1) + O(hy?)
(56a)
and

KOO i N+1
w0 == () (tesplicn — o™

rsz

- %)]}N“)[%(Zm)(Zi + 1)

— {expli(v;;
x {expli(dhy — )1 exp(K - 1) + Oy ?),

(56b)

where expressions exp(iy;) and exp(iy/}) are given by (32a)
and (32b), respectively. Formulae (56a), (56b) are valid for
both coplanar and non-coplanar diffractions in and outside the
Bragg-peak regions if all other poles of the dispersion relation
are well separated from the two poles 6, and 6.

In the Bragg-peak region where 6 is near (mod 27) to 6,
the expressions for ¥, — 0%, and ¥, — 6, are given by (35a)
and (35b). Then, since when changing the sign of z,;, solutions
¥, and ¥ interchange, (56a), (56b) may be expressed in the
following form suitable for further discussion in §5:

k-
We,(r) = Aexp (—i 233)

X {[erl + (Zfsl + 1)1/2] CXP[I(N + 1)“3212];—]
— [z, — (22, + D] expli(N + Das, &%, 1}

X 225+ DT exp[iKG - (r+2) ]

for z > Naj, (57a)
and
k-
W (r) = (—1)Aexp (—i 2"‘*)
Ko\ 172
X (%) {exp[i(N + 1)a3Z/ZZL+]
rsz
— explitN + Das. e 1}2(z7, + 1T
X exp |:i(N + Das, i:| exp [1K:§ . (r + —3)]
as, 2
for z > Na,_, (57b)

where z,,; is defined by (34) and
o %-kZ é;-kZ

2k, 2k .K,)"

Kex = 2kz [an + (Zml 1)1/2] (58)

express the differences between the z components of the
wavevectors of the local field and the incident beam [see (48)
and (35a), (35b)].
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(ii) Bragg geometry

As ZH = 2M, = 2M{, , by using (50) and (52), we get
detM}, det!' M
0 _ - 0 4 O(h:?)

detH det' H

Xgp = m_m—m

_ X3 =Yoo Xz =Y o),
yrs +) (N+1) _ Xis = Vrs ( ) (N+1)
+ — rs
Xoo — 00 KXes — 00

(59a)

which determines the amplitude of the external beam with
K{, =k, and

detM;  det'' M 5
detH - det" H +0h")
—\N+1 + \N+1
- xo() Vrs (xm)zv (XOO) — Vrs * O(hSZ)’
+ _’i rs) o _ - (x() )N+1
Xo0 — Yoo X5 = Yoo
(59b)

which determines the amplitude of the external beam with K.

The fractions (g — Yy (xg — yoo) and
(c; —y)/ (s — ydo) in (39a), (59b) may be evaluated by
using the dispersion relation (39). Using it, we obtain from
(18b) and (18a) the wavefunctions of the two external waves in
the Bragg geometry,

Wo(r) = ARs(Y, (Y7 — 1) ({exp[—i(y, — )V

X [Yrs + S(Yrs)(ers - 1)1/2] - {eXP[_l(W; - 9(-)%)]}N+1

X [,y = s(Y, (Y2 — 1)) exp(iK, - 1) + O(h; %)

(60a)
and
K 1/2

Wi =4(3) (fesplios, —

— {expli(¥iy — 6)™)

x ({expli(Wy; — 6NV, + (Y, ) (Y2 — 1)'7]

— {expli(¥iy — 0V Y, — s(V, (Y2 — D))

X exp 5 exp(iK, - ¥) + O(hy "),

(60b)

where Y, is given by (43) and expressions exp(iy,) and
exp(iy;;) are given by (41a) and (41b), respectively. As in the
Laue geometry, formulae (60a) and (60b) are valid for both
coplanar and non-coplanar diffractions in and outside the
Bragg-peak regions if all other poles of the dispersion relation
are well separated from the two poles 65, and 6.

In the Bragg-peak region where 0 is near (mod 27) to 43,
the expressions for ¥, — 0, and ¥, — 0, are given by (44a)
and (44b). Then, (60a), (60b) may be expressed in the
following form suitable for further discussion in §5:

Wio(r) = Aexp <_1 )[ZO’rsz - 1)1/2]
x { exp[—i(N + Day &2 ly,q + (07, — D]
- exp[—l(N + 1)a3zlz?+][))rsl - rsl - 1)1/2]}

x exp[iK% . (r + %)] for z > Nas, (61a)

and

Koo\ k-
Ue(r) = (-1'A (ﬂ> exp <—i 2a3)
VSZ

{exp[1(N+ 1)a3z ] — expli(N + 1)a3z ol ]}

x { expli(N + Dag &2, 1y, + (7, — ']
- eXP[I(N + 1)031E?—][yrsl - rsl - 1)1/2]}
X exp[iK,‘s . (r + %)] for z <0, (61b)

where y,; is defined by (45) and

B _ £k £k 2 12
Kep = =51~ 2(kZK—)1/2[y”’ Ty — D7 (62)

z sz
express again the differences between the z components of the
wavevectors of the local field and the incident beam [see
equations (48) and (44a), (44b)].

To enlighten the conditions under which formulae derived
for wavefunctions may be applied, let us consider e.g. the
diffraction K| in the Laue geometry. Formulae (56a), (56b)
with (r,s) = (1, 1) hold for all angles of incidence except those
near y;-, ipy and yg, where beams other than (1, 1) satisfy
the Bragg diffraction condition, and those near grazing inci-
dence y5, and emergence y5,. To find the influence of the
Bragg reflection, say Kj, on the diffraction K, near yf, it
would be necessary to enlarge submatrices (51) of the second
order "H, "M, "M{, into matrices of the third order by
including large elements (x, — y;,) " and (x;; — y&;) " and, at
the same time, to add the term with the denominator (x — y;;)
on the left-hand side of the dispersion relation (27) (three-
beam case). In the Bragg-peak region at V1L11’ formulae (56a),
(56b) may be simplified, taking the form (57a), (57b) com-
patible with that yielded by the Laue theory as will be shown
in the next section. Concluding, let us note that the influence
of the Bragg reflections on the crystal truncation rod scat-
tering in the case of a semi-infinite crystal was studied by
Litzman & Mikulik (1999).

5. Comparison with Laue’s theory

In the Laue dynamical theory of diffraction, the crystal is
considered to be a continuum described by the periodic
potential. If we apply this theory to neutron diffraction, the
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coherent wave (r), which describes neutron optical
phenomena, satisfies the one-body Schrodinger equation®

2m

|:— L A+ v(l‘)i| Y(r) = EY(r). (63)

For a finite but otherwise perfect crystal of volume V, Sears
puts

inside V

o) = { ;0 ; exp(iGy, - 1) 64)

outside V'

with G, being the reciprocal-lattice vector and
vy = (27h*/m)pb, where m is the neutron mass, b is the bound
coherent scattering length and p = [a,a,a;]7! is the number
density.

Since v(r) is discontinuous at the surface of V, one must find
separate solutions of (63) inside and outside V and then match
the exterior and interior solutions by requiring that ¥(r) and
Vi(r) be continuous at the boundary. Exterior solution is
expressed as a superposition of plane waves

Y(r) = > aexp(ik - r), (65)

in which the wavevectors k all have the same magnitude,
which is determined by the incident-neutron energy
E = h*k?/2m. The interior solution is expressed as a super-
position of Bloch waves

W) = Y AQ) exp(iK - 1), (66)

in which A(r) = ) A, exp(iG,, - r) is periodic. The values of K
follow from the dispersion equation and to each value of K
there corresponds a set of coefficients Ay. The values of wave
amplitudes are determined by the boundary conditions.

In the two-beam case when k satisfies the condition for
Bragg reflection via one particular reciprocal-lattice vector
G,,, the dispersion equation yields two values of K. If the
incident wave ¥(r) = aexp(ik - r) enters the crystal through a
plane boundary at z = 0, the two values of K are given by
K, =k + k. where k. = k_,e;. The quantity «_, rendering
the difference between z components of the wavevectors
inside and outside the crystal is given by equation (6.1.49) in
Sears (1989),

£k’ £k Y v v
=—2—— + = 3 ,
Koy 2k, 20k |k, + Gy )2 | 18] H +s(8)

(67)

where s(8) means the sign of § defined by (68) (+1 in Laue
geometry and —1 in Bragg geometry) and & = v, /E is related
to our parameter A, by (23). Parameters § and y are defined by
equation (6.1.46) in Sears (1989). If the normalized unit-cell
structure factor is equal to one,

4In this section, we follow the presentation by Sears (1989). We keep his
notation with one exception, instead of K;, we use for the vectors of the
reciprocal lattice G, = —K,,. Further, we consider the lattice without basis
thus the normalized unit-cell structure factor F, = 1. Moreover, we will
rearrange Sears’s formulae into a form suitable for comparison with our
results.

k
§=—2 (68)
kz + Ghz

which is obviously positive or negative for the Laue and Bragg
geometry, respectively, and further it can be shown that

y 1 <|kz+GhZ|>1/2 < k. )1/2
B2~ 2 k. Tk, + Gyl

o) k 1/2
‘ (72) sin 20, A0 |, (69)
5 |kz + Ghz'

where we have introduced the Bragg angle ®g and the
departure A® from Bragg’s incidence of the incident wave. In
(69), the sign assignment is —+ for the Laue geometry and
+— for the Bragg geometry. Note that y/|§| is equal to the y
parameter defined by equation (9.23) in Rauch & Petraschek
(1978), or deviation parameter 1 defined by equation (4.25) in
Authier (2001).3

Finally, if reflection is neglected, the external wavefunction
(65) is given in the Laue geometry by [see equation (6.2.1) in
Sears (1989)]

aexp(k - r) z<0

a exp(ik’ -r) + a” exp(ik” -x) z>d (70)

Y(r) = {
and in the Bragg geometry by [see equation (6.2.2) in Sears
(1989)]

aexp(ik -r) + d exp(ik’ -r) z<0
a’ exp(ik” - r) z>d,

Y(r) = { (71)
where amplitudes ¢’ and a” of reflected and forward-propa-
gating waves, respectively, are obtained by solving the
boundary-value problem. The requirement that y(r) be
continuous at the entrance surface at z = 0 and at the exit
surface at z = d then gives the following for the two geome-
tries.
(i) Laue geometry

w// — a// exp(ik// . l')

b} 1/2
= a! |:81_y/2 + (% + 1) ] exp(ix,_d)
2 1/2 12771
— |:81% - (% + 1) :| exp(iKHd)] |:2<§ + l) :|

x exp(ik” - r) forz >d (72a)
and
Y = d exp(ik'.x)
k. O\ 1
- “(kz +ZGhZ) 2A2/5+ )17
x [exp(ik,, d) — exp(ix,_d)] exp(ig,.d) exp(ik’ - r)
for z >d. (72b)

5 For the Laue geometry, the sign of parameter 5 defined by Authier (2001) is
opposite to the sign of y/|3| in (69).
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(ii) Bragg geometry
Ip// — a// eXp(lk//

2
= a2(y*/18| — 1)1/2]{exp( ik, |:|8|):/2 + <|J;| _

12
) }
127) !
(%—1) ]} exp(ik” - r)

—exp(—ik,, )|:

151172
for z>d (73a)
and
Y =d exp(ik’ - r)
k 12
= a<|k—|——ZG|) [exp(ix,, d) — exp(ik,_d)]
z hz
) 1/2
v
d LA
{exp(lchJr )[|5|l/2 + (|8| ) :|
) 127!
. )4 14 ./
— eXp(le_d)|:|5|1/2 — (m — 1) :| } exp(ik’ - r)
for z <0 (73b)
with
K=k+G,—q, k'=k, (74)

for both Laue and Bragg geometries, where q; = g€, is given
by equation (6.2.4) in Sears (1989). Introducing Bragg angle
®p and the departure A® from Bragg’s incidence of the
incident wave, the equation for g,, reads

25in 20y A®

_— 75
% +Ghz (75)

q1; =
so that according to (90) ¢, is equal to p/a;, or n/a,, for the
Laue or Bragg geometry, respectively.

Now we may compare wavefunctions for the Laue (72a),
(72b) and Bragg (73a), (73b) geometries with our corre-
sponding formulae (57a), (59b) and (61a), (61b). We can see
that the results of both developments have the same algebraic
forms but with different parameters. The thickness of the slab
d is given by (N + 1)a,,, the wavevector differences «,, (67)
are replaced by k-, (58) or %, (62) and the parameter y/|8]"/>
(69) by z,, (37) or y,; (47). The formulae by Sears are
transformed into ours by replacing |k, + G|, representing
the z components of the diffracted beam in an infinite crystal,
by K., defined by (4), representing the diffracted wave on a
slab. This difference stems from the fact that Laue’s theory is
based on the expansions (64) and (66) appropriate for an
infinite (unbounded) crystal whereas our development
respects from the very beginning the two-dimensional trans-
lation symmetry of a crystal slab. The relation between
|k, + Gy, | and K, is examined in detail in Appendix B, where
it has been found that

& — |kz + Ghz|
k k,

Z

A®sin20g
cos y|cos Y|

(76)

with y and Y/ being the angles between e; and the incident, k,
and reflected, K, directions, respectively. Since A® is small,
we may conclude that the differences between K, /k, and
|k, + Gy, |/k, are negligible when y and )’ are not near /2
(grazing incidence or emergence). But the diffraction at
grazing incidence or grazing emergence is not considered in
the present paper.

We proceed in comparing wavevectors k' and K& of the
reflected wave. Comparing (74) and (4), we can see that the
component of the wavevector k' parallel to the crystal surface
is just equal to k,',‘q defined by (3). On the other hand, as shown
by (91), z components slightly differ, and whereas according to
(4) (KX)> =K%, the modulus of K is not equal to k>
(kK> =k*+¢q?.  Furthermore, the phase factors
exp[—i(k - a3)/2], expli(Ky - a3)/2], (—1) expli(Ky; - a3)/2] and
(—1) exp[i(K}: - a;)/2] in our formulae (57a), (57b) and (61a),
(61b) rendering the shift of the entrance crystal surface above
the first atomic plane by a;/2 and of the exit crystal surface
below the last atomic plane by a,/2 appear since the thickness
of the slab is considered to be (N + 1)a;, and not Nas, (see
also Dub & Litzman, 2001a). These shifts are connected with
the boundary condition problem.

Having found wavefunctions, we may evaluate reflectivities.
Using (57b) and (61b), we get respective reflectivity of the
Bragg reflected wave in the Laue and Bragg geometries,

. sin’[(N + 1)as (/A) (22, + DV
m Zzsl + 1

(Laue geometry) (77)
< 1 —cos [(N + 1)a3z(n/A)(yrsl 1)1/2]

® Yrsl - COSZ[(N + 1)a3z(n/A)(yrsl - 1)1/2]
(Bragg geometry), (78)

where

|a, X a,la; 12
L7273 k(cos ylcos y])V2. (79)
20,

Naturally, (77) and (78) conform to the results of the standard
Laue theory [see equations (9.30) and (9.35) in Rauch &
Petraschek (1978)] if the thickness of the slab is (N + 1)as,
and A is considered to be the Pendellosung distance [see e.g.
equation (9.22) in Rauch & Petraschek (1978)].

A =

6. Summary and concluding remarks

In this paper, we have treated the diffraction on a crystalline
slab as a multiple scattering problem based upon the Ewald
equations (10a), (10b). This approach overcomes the limita-
tions of Laue’s method (Sears, 1989).

We have considered from the very beginning the two-
dimensional symmetry of a crystalline slab. Thus, (i) the
wavevectors KjE (k) of the diffracted waves in the Laue (+)
and Bragg (— ) geometries are given by (4), and (ii) the two-
dimensional interplanar and intraplanar lattice sums have
been calculated, the latter given by (14a), expressing rigor-
ously the local-field effects. The multiple-beam wavefunctions
above and below the slab are then given by (18a) and (18b),
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respectively, which are valid for any angle of incidence.
Amplitudes of the wavefunctions are determined by deter-
minants of fundamental matrices H (16) and qu (19a), (19b),
the elements of which are simple functions of Qpiq =a,- Klfq (k),
being given by the geometry and the wavelength only, and of
solutions Ifq of the dispersion equation (13). We have found
that the dispersion relation is represented for both coplanar
and non-coplanar diffractions by a ‘dispersion plot’ (20) with
poles Qpiq, which are of crucial importance since, as indicated by
(7a), (7b), the confluence of two poles means that Bragg
reflection occurs. Thus the Ewald sphere is replaced by ‘the I'
diagram’ (Fig. 1) and no three-dimensional dispersion surface
or approximate dispersion hyperbolae are introduced. With
‘the I" diagram’, it is possible to find Bragg diffraction posi-
tions and also to predict the mutual influence of diffractions in
different directions. Furthermore, no boundary conditions
needed in Laue’s theory are to be applied. Thus, the question
of the nature of boundary surfaces does not appear.

Next we have shown that to handle particular cases it is
necessary to rearrange matrices H and Mpiq into the forms
proper to evaluate quotients detM,, /detH and
det M;rq /detH by using formula (50) for evaluating the
determinant of a symmetrically partitioned square matrix. In
particular, considering that only two poles 6f, and 8 in the
Laue geometry or 6, and 6, in the Bragg geometry may
coincide, the other ones being well separated from both 6,
and 0%, the problem can be reduced to a two-beam one. The
corresponding wavefunctions of the forward-propagating
wave and the diffracted one, given by (56a), (56b) or (60a),
(60b) for the Laue or Bragg geometry, respectively, are valid
for both coplanar and non-coplanar diffractions in and outside
the Bragg-peak region and thus should not be confused with
the two-beam approximation in the standard Laue theory.
Then, the solution in the Bragg-peak region is a special case of
the general solution. We have shown that in the Bragg-peak
region formulae (56a), (56b) and (60a), (60b) result in (57a),
(57b) and (61a), (61b), respectively, which have the same
algebraic forms as wavefunctions (72a), (72b) and (73a), (73b)
derived in the frame of Laue’s theory, but the parameters
differ, and the ‘mathematical’ boundary planes are shifted
from the corresponding surface atomic layers. The differences
in parameters could be understood if we take into account that
our development considers from the very beginning the two-
dimensional translation symmetry of a crystal slab, whereas in
the Laue theory the Schrodinger equation with the optical
potential possessing the full translation symmetry of the
unbounded crystal is to be solved and after that the interior
solution is matched to the exterior one.

Summarizing, let us point out that our approach based upon
the Ewald method yields the solution to the diffraction
problem that is valid generally and thus, in principle, it may be
applied to extreme cases outside the scope of the standard
dynamical theory of diffraction. In particular, we already
treated the diffraction at the Bragg angle near /2 (Litzman et
al., 1996) or the influence of Bragg diffractions on the coplanar
and non-coplanar crystal truncation rod scattering (Litzman &
Mikulik, 1999). Our approach enables us to study other

extreme cases, such as the diffraction at grazing incidence or
grazing emergence (Authier, 2001, ch. 8), where three poles in
our dispersion relation (13) coincide. Then submatrices (51) or
(52) of the second order would have to be replaced by
submatrices of the third order, which contain all relevant large
elements, the dispersion relation becoming now an equation of
the third order too.

Concluding, let us mention that we have considered a
crystal with a cell containing one atom only. The general
solution of the diffraction problem found in Litzman (1986)
may be applied to a lattice with general basis but resulting
formulae for diffracted waves in such a transparent form as
derived in the present paper have hitherto been obtained for a
single atomic plane only (Dub & Litzman, 2001b). The case
with distributed cell content would be challenging also
because of the question of where to locate the boundary and
the question posed by Ignatovich er al. (1996) on forbidden
reflections.

APPENDIX A
Parameters x and 7

The parameters @ and 7 are defined by (26) and (38) for the
Laue and Bragg geometry, respectively. After inserting the
Bragg condition for the Laue geometry (7a) into (26), we
obtain

= 65(k) — 6, (k) — [0 (kp) — 6, (kp)]
=a;-k—a;- K;rq(k) —[a; - kg —a; - K;—q(kB)]
= a3Z[quz(kB) — quz(k) +k, — kg,

Analogously in the Bragg geometry,

n = 0(k) — 6, (k) — [65,(kp) — 6,,(kp)]
=a;-k—a;- K;q(k) —[a; - kg —a; - K;q(kB)]
= a3z[—quz(kB) +K,.K) +k, —kg,]

pqz

If all the wavevectors k, kg, K (k), K} (ky) or k, kg, K, (k),
K, (kp) in the Laue or Bragg geometry, respectively, and the
normal to the crystal surface, e, oriented towards the inside of
the crystal lie in the same plane (the case of coplanar
diffraction), we can write kg, = kcos v, k, = kcos(yg + Ay)
and K, . (kg) = %k cos yg, with the sign + and — for the Laue
and Bragg geometry, respectively, where y5 and yg are the
angles between e; and the incident and reflected directions at
Bragg’s incidence, respectively. Then for small Ay, we find

after lengthy but easy algebra that
1 . ,
= —ay e o—sin(yy — ¥p)Ay + Ol(Ay)’] (80)
pPaz
and
1 . ,
N = a3k’ ——sin(yy — vp) Ay + O[(Ay)’].  (81)
KPqZ

Next we introduce the Bragg angle ®5 = |y — v4|/2 and the
departure from Bragg incidence of the incident wave A®. In
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both the Bragg and Laue geometries, two different situations
may occur.

(i) Laue geometry: (il) if y5 > y5 then Ay = A®; (i2) if
¥g <V then Ay = —AB.

(ii) Bragg geometry: (iil) if y5 > y5 then Ay = —A®; (ii2)
if y5 <yp then Ay = A®.

Considering all above possibilities, from (80) and (81) we
obtain finally

1
U= —as,k* ——sin20; A0 + O[(ABG)’] (82)
KPQZ
and
1
N = ay, k> ——sin205 A® + O[(A®)?]. (83)
pqz
APPENDIX B
Relation between |k, + G,,| and K,

4+ .
The vectors K, (k) defined by (4) can be expressed in two

coordinate systems (b, b,, €3) and (g;, g, g3):
K (k) =k + pb, + gb, £ e,K, (k)
=k+yg +:8 + ;8-
As g‘1| =b, gg =b,, we get y; = p and y, = q. Thus,
K[fq(k) =k +pg +4qg + y;:8;. (84)

Multiplying the last equation by a3, we obtain Gpiq = 0} + 27y,
[¢f. definition (6)], so that

+ +
_ qu B 6’00

- (85)

Y3
Using (84), we get

erz (k) =€ Kﬁ(k)
= (k + rg; + 58 + y;8;) - €;
=2(k+rg +58 —Ig) et (y; +1)g; e,

where the signs + and — correspond to the Laue and Bragg
geometries, respectively. Considering that G, =
rg, + sg, — lg; and y; is given by (85), we find that the term
K,,. is related to the following terms as given below.

(i) In the Laue geometry
K,,, is related to k, + G, > 0 by

Krsz(k) = kz + Ghz + (QI - 9(-)';) + an)gaT:

1
=kz+Ghz_l'l’_7 (86)
as,
where the parameter u, defined by (26), is, in the case of
coplanar diffraction, given by (82).
(ii) In the Bragg geometry
K,,, is related to |k, + Gy.|, k., + G, <0, by

- €
K,..(K) = k. + G,.| — (6 — 6 + 27]) g32—n3

1
:|kz+Ghz|+77_v (87)
as,
where the parameter 1, defined by (38), is, in the case of
coplanar diffraction, given by (83).
Finally, introducing (82) into (86) and (83) into (87), we get
for either geometry

k
K. = Ik, + Gy,| +—— A@sin20; + O[(A®)]  (88)
|cos |
and consequently
K. _ |k, + Gyl
k, k

z 4

ABsin20g
cos y|cos Y|

+0[(Aa0)],  (89)

where y and y’ are the angles between e; and the incident, k,
and reflected, Kﬁ, directions, respectively. Since A® is small,
we may conclude that the difference between K, /k, and
|k, + Gy,|/k, is negligible when y and ' are not near /2.

Finally, inserting (88) into (75) under the assumption that y
and y’ are not near /2, we get

41,05, = L+ O[(A®)] or n+O[(AG)]  (90)

for the Laue and Bragg geometry, respectively. Then after
inserting (90) into (74) and considering (88), (82) and (83), we
get that
2
k. =K, + O[(AO)7]. 91)

sz
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